A method for nanofluidic device prototyping using elastomeric collapse

被引:138
作者
Park, Seung-min [1 ]
Huh, Yun Suk [2 ]
Craighead, Harold G. [1 ]
Erickson, David [2 ]
机构
[1] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA
[2] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
concentrator; nanofluidic channel; single molecule manipulation; surface enhanced raman scattering; DNA-MOLECULES; FABRICATION; NANOCHANNELS; LITHOGRAPHY; SEPARATION; SYSTEMS; LENGTH;
D O I
10.1073/pnas.0904004106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nanofluidics represents a promising solution to problems in fields ranging from biomolecular analysis to optical property tuning. Recently a number of simple nanofluidic fabrication techniques have been introduced that exploit the deformability of elastomeric materials like polydimethylsiloxane (PDMS). These techniques are limited by the complexity of the devices that can be fabricated, which can only create straight or irregular channels normal to the direction of an applied strain. Here, we report a technique for nanofluidic fabrication based on the controlled collapse of microchannel structures. As is demonstrated, this method converts the easy to control vertical dimension of a PDMS mold to the lateral dimension of a nanochannel. We demonstrate here the creation of complex nanochannel structures as small as 60 nm and provide simple design rules for determining the conditions under which nanochannel formation will occur. The applicability of the technique to biomolecular analysis is demonstrated by showing DNA elongation in a nanochannel and a technique for optofluidic surface enhanced Raman detection of nucleic acids.
引用
收藏
页码:15549 / 15554
页数:6
相关论文
共 39 条
  • [1] Nanofluidics - A fork in the nano-road
    Austin, Robert
    [J]. NATURE NANOTECHNOLOGY, 2007, 2 (02) : 79 - 80
  • [2] Fabrication of 10 nm enclosed nanofluidic channels
    Cao, H
    Yu, ZN
    Wang, J
    Tegenfeldt, JO
    Austin, RH
    Chen, E
    Wu, W
    Chou, SY
    [J]. APPLIED PHYSICS LETTERS, 2002, 81 (01) : 174 - 176
  • [3] Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection
    Cao, YWC
    Jin, RC
    Mirkin, CA
    [J]. SCIENCE, 2002, 297 (5586) : 1536 - 1540
  • [4] Additional amplifications of SERS via an optofluidic CD-based platform
    Choi, Dukhyun
    Kang, Taewook
    Cho, Hansang
    Choi, Yeonho
    Lee, Luke P.
    [J]. LAB ON A CHIP, 2009, 9 (02) : 239 - 243
  • [5] A microfabricated device for sizing and sorting DNA molecules
    Chou, HP
    Spence, C
    Scherer, A
    Quake, S
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (01) : 11 - 13
  • [6] Nanofluidic biosensing for β-amyloid detection using surface enhanced Raman spectroscopy
    Chou, I-Hsien
    Benford, Melodie
    Beier, Hope T.
    Cote, Gerard L.
    Wang, Miao
    Jing, Nan
    Kameoka, Jun
    Good, Theresa A.
    [J]. NANO LETTERS, 2008, 8 (06) : 1729 - 1735
  • [7] Imprint lithography with 25-nanometer resolution
    Chou, SY
    Krauss, PR
    Renstrom, PJ
    [J]. SCIENCE, 1996, 272 (5258) : 85 - 87
  • [8] Non-lithographic wrinkle nanochannels for protein preconcentration
    Chung, Seok
    Lee, Jeong Hoon
    Moon, Myoung-Woon
    Han, Jongyoon
    Kamm, Roger D.
    [J]. ADVANCED MATERIALS, 2008, 20 (16) : 3011 - 3016
  • [9] Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O
    Cowan, ML
    Bruner, BD
    Huse, N
    Dwyer, JR
    Chugh, B
    Nibbering, ETJ
    Elsaesser, T
    Miller, RJD
    [J]. NATURE, 2005, 434 (7030) : 199 - 202
  • [10] Electrochemomechanical energy conversion in nanofluidic channels
    Daiguji, H
    Yang, PD
    Szeri, AJ
    Majumdar, A
    [J]. NANO LETTERS, 2004, 4 (12) : 2315 - 2321