Oddball and incongruity effects during Stroop task performance: A comparative fMRI study on selective attention

被引:39
作者
Melcher, Tobias [1 ]
Gruber, Oliver [1 ]
机构
[1] Saarland Univ Hosp, Cognit Neurosci Unit, Dept Psychiat & Psychotherapy, D-66421 Homburg, Germany
关键词
competition; selective attention; top-down control; Stroop; oddball; fMRI;
D O I
10.1016/j.brainres.2006.08.120
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The aim of this fMRI study was to investigate and compare the neural mechanisms of selective attention during two different operationalizations of competition between task-relevant and task-irrelevant information: Stroop-incongruity and oddballs. For this purpose, we employed a Stroop-like oddball task in which subjects responded to the font size of presented word stimuli. Stroop-incongruity was created by (response-)incongruent word information while oddballs comprised low-frequency events in a task-irrelevant, unattended dimension. Thereby, in order to elucidate the influence of processing domain from which competition emanates, oddball conditions were created in two different attribute dimensions, color and word meaning. Either oddball condition was expected to evoke an orienting response, which participants would have to override in order to maintain adequate performance. Incongruent Stroop trials were expected to produce Stroop-interference so that subjects would have to override the predominant tendency to read and respond to word meaning. All competition conditions exhibited significantly prolonged reaction times compared to control trials, indeed effective. fMRI data analyses delineated two discriminative components of competition: one component mainly related to motor preparation and another, primarily attentional component. Regarding the first, Stroop-interference increased activation mainly in regions implicated in motor control or response preparation. Regarding the second, Word-oddballs increased activation in a frontoparietal "attention network". Furthermore, Word-oddballs and Color-oddballs exhibited striking activation overlap mainly in prefrontal regions but also in posterior processing areas. Here, the data emphasized a prominent role of posterior lateral PFC in implementing top-down attentional control. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:136 / 149
页数:14
相关论文
共 69 条
[1]   Inhibition of subliminally primed responses is mediated by the caudate and thalamus: evidence from functional MRI and Huntington's disease [J].
Aron, AR ;
Schlaghecken, F ;
Fletcher, PC ;
Bullmore, ET ;
Eimer, M ;
Barker, R ;
Sahakian, BJ ;
Robbins, TW .
BRAIN, 2003, 126 :713-723
[2]   fMRI studies of stroop tasks reveal unique roles of anterior and posterior brain systems in attentional selection [J].
Banich, MT ;
Milham, MP ;
Atchley, R ;
Cohen, NJ ;
Webb, A ;
Wszalek, T ;
Kramer, AF ;
Liang, ZP ;
Wright, A ;
Shenker, J ;
Magin, R .
JOURNAL OF COGNITIVE NEUROSCIENCE, 2000, 12 (06) :988-1000
[3]   ORGANIZATION OF AFFERENT INPUT TO SUBDIVISIONS OF AREA-8 IN THE RHESUS-MONKEY [J].
BARBAS, H ;
MESULAM, MM .
JOURNAL OF COMPARATIVE NEUROLOGY, 1981, 200 (03) :407-431
[4]   A comparison of auditory and visual distraction effects:: behavioral and event-related indices [J].
Berti, S ;
Schröger, E .
COGNITIVE BRAIN RESEARCH, 2001, 10 (03) :265-273
[5]   Conflict monitoring and cognitive control [J].
Botvinick, MM ;
Braver, TS ;
Barch, DM ;
Carter, CS ;
Cohen, JD .
PSYCHOLOGICAL REVIEW, 2001, 108 (03) :624-652
[6]   Decomposing components of task preparation with functional magnetic resonance imaging [J].
Brass, M ;
von Cramon, DY .
JOURNAL OF COGNITIVE NEUROSCIENCE, 2004, 16 (04) :609-620
[7]   The role of the inferior frontal junction area in cognitive control [J].
Brass, M ;
Derrfuss, J ;
Forstmann, B ;
von Cramon, DY .
TRENDS IN COGNITIVE SCIENCES, 2005, 9 (07) :314-316
[8]   Anterior cingulate cortex and response conflict: Effects of frequency, inhibition and errors [J].
Braver, TS ;
Barch, DM ;
Gray, JR ;
Molfese, DL ;
Snyder, A .
CEREBRAL CORTEX, 2001, 11 (09) :825-836
[9]   Tactile attention tasks enhance activation in somatosensory regions of parietal cortex: A positron emission tomography study [J].
Burton, H ;
Abend, NS ;
MacLeod, AMK ;
Sinclair, RJ ;
Snyder, AZ ;
Raichle, ME .
CEREBRAL CORTEX, 1999, 9 (07) :662-674
[10]   Anterior cingulate cortex, error detection, and the online monitoring of performance [J].
Carter, CS ;
Braver, TS ;
Barch, DM ;
Botvinick, MM ;
Noll, D ;
Cohen, JD .
SCIENCE, 1998, 280 (5364) :747-749