Raman Radiation Patterns of Graphene

被引:60
作者
Budde, Harald [1 ,2 ]
Coca-Lopez, Nicolas [1 ,2 ]
Shi, Xian [1 ,2 ]
Ciesielski, Richard [1 ,2 ]
Lombardo, Antonio [3 ]
Yoon, Duhee [3 ]
Ferrari, Andrea C. [3 ]
Hartschuh, Achim [1 ,2 ]
机构
[1] Ludwig Maximilians Univ Munchen, Dept Chem, Butenandtstr 5-13E, D-81377 Munich, Germany
[2] Ludwig Maximilians Univ Munchen, CeNS, Butenandtstr 5-13E, D-81377 Munich, Germany
[3] Univ Cambridge, Cambridge Graphene Ctr, Cambridge CB3 0FA, England
基金
英国工程与自然科学研究理事会;
关键词
graphene; Raman scattering; radiation patterns; TWISTED MULTILAYER GRAPHENE; POLARIZATION DEPENDENCE; OPTICAL ANTENNAS; SPECTROSCOPY; CARBON; SCATTERING; EMISSION; GRAPHITE; CRYSTALS; SPECTRUM;
D O I
10.1021/acsnano.5b06631
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report the angular distribution of the G and 2D Raman scattering from graphene on glass by detecting back focal plane patterns. The G Raman emission can be described by a superposition of two incoherent orthogonal point dipoles oriented in the graphene plane. Due to double resonant Raman scattering, the 2D emission can be represented by the sum of either three incoherent dipoles oriented 120 degrees with respect to each other, or two orthogonal incoherent ones with a 3:1 weight ratio. Parameter-free calculations of the G and 2D intensities are in excellent agreement with the experimental radiation patterns. We show that the 2D polarization ratio and the 2D/G intensity ratio depend on the numerical aperture of the microscope objective. This is due to the depolarization of the emission and excitation light when graphene is on a dielectric substrate, as well as to tight focusing. The polarization contrast decreases substantially for increasing collection angle, due to polarization mixing caused by the air-dielectric interface. This also influences the intensity ratio I(2D)/I(G), a crucial quantity for estimating the doping in graphene. Our results are thus important for the quantitative analysis of the Raman intensities in confocal microscopy. In addition, they are relevant for understanding the influence of signal enhancing plasmonic antenna structures, which typically modify the sample's radiation pattern.
引用
收藏
页码:1756 / 1763
页数:8
相关论文
共 50 条
[1]  
Baranov A. V., 1987, Optics and Spectroscopy, V62, P612
[2]   Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene [J].
Basko, D. M. ;
Piscanec, S. ;
Ferrari, A. C. .
PHYSICAL REVIEW B, 2009, 80 (16)
[3]   Raman characterization of defects and dopants in graphene [J].
Beams, Ryan ;
Cancado, Luiz Gustavo ;
Novotny, Lukas .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (08)
[4]   Enhancing and redirecting carbon nanotube photoluminescence by an optical antenna [J].
Boehmler, Miriam ;
Hartmann, Nicolai ;
Georgi, Carsten ;
Hennrich, Frank ;
Green, Alexander A. ;
Hersam, Mark C. ;
Hartschuh, Achim .
OPTICS EXPRESS, 2010, 18 (16) :16443-16451
[5]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
[6]   Production and processing of graphene and 2d crystals [J].
Bonaccorso, Francesco ;
Lombardo, Antonio ;
Hasan, Tawfique ;
Sun, Zhipei ;
Colombo, Luigi ;
Ferrari, Andrea C. .
MATERIALS TODAY, 2012, 15 (12) :564-589
[7]   Doping Dependence of the Raman Spectrum of Defected Graphene [J].
Bruna, Matteo ;
Ott, Anna K. ;
Ijaes, Mari ;
Yoon, Duhee ;
Sassi, Ugo ;
Ferrari, Andrea C. .
ACS NANO, 2014, 8 (07) :7432-7441
[8]   Influence of the atomic structure on the Raman spectra of graphite edges -: art. no. 247401 [J].
Cançado, LG ;
Pimenta, MA ;
Neves, BRA ;
Dantas, MSS ;
Jorio, A .
PHYSICAL REVIEW LETTERS, 2004, 93 (24)
[9]   Theory of Spatial Coherence in Near-Field Raman Scattering [J].
Cancado, Luiz Gustavo ;
Beams, Ryan ;
Jorio, Ado ;
Novotny, Lukas .
PHYSICAL REVIEW X, 2014, 4 (03)
[10]   Rayleigh imaging of graphene and graphene layers [J].
Casiraghi, C. ;
Hartschuh, A. ;
Lidorikis, E. ;
Qian, H. ;
Harutyunyan, H. ;
Gokus, T. ;
Novoselov, K. S. ;
Ferrari, A. C. .
NANO LETTERS, 2007, 7 (09) :2711-2717