StageNet: Stage-Aware Neural Networks for Health Risk Prediction

被引:54
作者
Gao, Junyi [1 ,2 ]
Xiao, Cao [3 ]
Wang, Yasha [1 ,2 ]
Tang, Wen [4 ]
Glass, Lucas M. [3 ,5 ]
Sun, Jimeng [6 ,7 ]
机构
[1] Minist Educ China, Key Lab High Confidence Software Technol, Beijing, Peoples R China
[2] Peking Univ, Natl Engn Res Ctr Software Engn, Beijing, Peoples R China
[3] IQVIA, Durham, NC USA
[4] Peking Univ Third Hosp, Dept Nephrol, Beijing, Peoples R China
[5] Temple Univ, Philadelphia, PA 19122 USA
[6] Univ Illinois, Champaign, IL USA
[7] Georgia Inst Technol, Atlanta, GA 30332 USA
来源
WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020) | 2020年
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
healthcare informatics; electronic health record; risk prediction; CHRONIC KIDNEY-DISEASE; C-REACTIVE PROTEIN; NUTRITIONAL-STATUS; MORTALITY; SURVIVAL; TIME; PATHOGENESIS; REGRESSION; STABILITY; HEART;
D O I
10.1145/3366423.3380136
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep learning has demonstrated success in health risk prediction especially for patients with chronic and progressing conditions. Most existing works focus on learning disease patterns from longitudinal patient data, but pay little attention to the disease progression stage itself. To fill the gap, we propose a Stage-aware neural Network (StageNet) model to extract disease stage information from patient data and integrate it into risk prediction. StageNet is enabled by (1) a stage-aware long short-term memory (LSTM) module that extracts health stage variations unsupervisedly; (2) a stage-adaptive convolutional module that incorporates stage-related progression patterns into risk prediction. We evaluate StageNet on two real-world datasets and show that StageNet outperforms state-of-the-art models in risk prediction task and patient subtyping task. Compared to the best baseline model, StageNet achieves up to 12% higher AUPRC for risk prediction task on two real-world patient datasets. StageNet also achieves over 58% higher Calinski-Harabasz score (a cluster quality metric) for a patient subtyping task.
引用
收藏
页码:530 / 540
页数:11
相关论文
共 43 条
[1]  
[Anonymous], 2017, ARXIV170307771
[2]  
[Anonymous], 2015, ACS SYM SER
[3]  
[Anonymous], 2018, ARXIV181009536
[4]  
[Anonymous], 2013, INT C MACHINE LEARNI
[5]   THE PATHOGENESIS OF HYPER-CHLOREMIC METABOLIC-ACIDOSIS ASSOCIATED WITH KIDNEY-TRANSPLANTATION [J].
BATLLE, DC ;
MOZES, MF ;
MANALIGOD, J ;
ARRUDA, JAL ;
KURTZMAN, NA .
AMERICAN JOURNAL OF MEDICINE, 1981, 70 (04) :786-796
[6]   Patient Subtyping via Time-Aware LSTM Networks [J].
Baytas, Inci M. ;
Xiao, Cao ;
Zhang, Xi ;
Wang, Fei ;
Jain, Anil K. ;
Zhou, Jiayu .
KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2017, :65-74
[7]  
Calinski T., 1974, Communications in Statistics-theory and Methods, V3, P1, DOI [DOI 10.1080/03610927408827101, 10.1080/03610927408827101, https://doi.org/10.1080/03610927408827101]
[8]  
Choi E, 2016, ADV NEUR IN, V29
[9]   PSYCHOLOGICAL COPING MECHANISMS AND SURVIVAL TIME IN METASTATIC BREAST-CANCER [J].
DEROGATIS, LR ;
ABELOFF, MD ;
MELISARATOS, N .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1979, 242 (14) :1504-1508
[10]   Nutritional therapy reduces protein carbamylation through urea lowering in chronic kidney disease [J].
Di Iorio, Biagio R. ;
Marzocco, Stefania ;
Bellasi, Antonio ;
De Simone, Emanuele ;
Dal Piaz, Fabrizio ;
Rocchetti, Maria Teresa ;
Cosola, Carmela ;
Di Micco, Lucia ;
Gesualdo, Loreto .
NEPHROLOGY DIALYSIS TRANSPLANTATION, 2018, 33 (05) :804-813