On finite groups with σ-subnormal Schmidt subgroups

被引:31
作者
Al-Sharo, Khaled A. [1 ]
Skiba, Alexander N. [2 ]
机构
[1] Al Al Bayt Univ, Dept Math, Mafraq 25113, Jordan
[2] Francisk Skorina Gomel State Univ, Dept Math, Gomel, BELARUS
关键词
sigma-Nilpotent group; sigma-primary group; sigma-subnormal subgroup; finite group; Schmidt subgroup;
D O I
10.1080/00927872.2016.1236938
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group and sigma = {sigma(i)vertical bar i is an element of I} be some partition of the set of all primes. We say that G is: sigma-primary if G is a sigma(j)-group, forsome i; sigma-nilpotent if G = G(1) x ... x G(n) for some sigma-primary groups G(1),..., G(n). A sub group A of G is called sigma-subnormal in G if there is a subgroup chain A = A(0) <= A(1) <= ... <= A(m) = G such thateither A(i-1) (sic) A(i) or A(i)/(A(i-1))(Ai) is sigma-primary fo rall i = 1,..., m. In this paper we provethat the set of all sigma-subnormal (sigma-nilpotent) subgroups of G forms a sublattice of the lattice of all subgroups of G and, being based on this result, we prove also that if every Schmidt subgroup of G is sigma-subnormal in G, then the commutant subgroup G' is sigma-nilpotent.
引用
收藏
页码:4158 / 4165
页数:8
相关论文
共 16 条
[1]  
[Anonymous], 1967, ENDLICHE GRUPPEN
[2]  
Ballester-Bolinches A., 2010, De Gruyter Exp. Math., V53
[3]  
Ballester-Bolinches A., 2006, Classes of Finite Groups
[4]  
Belonogov VA, 2014, T I MAT MEKH URO RAN, V20, P29
[5]  
Doerk K., 1992, De Gruyter Exp. Math., V4, pxiv + 891
[6]  
Guo W., 2015, Structure Theory for Canonical Classes of Finite Groups
[7]   Finite groups with permutable complete Wielandt sets of subgroups [J].
Guo, Wenbin ;
Skiba, Alexander N. .
JOURNAL OF GROUP THEORY, 2015, 18 (02) :191-200
[8]  
Kegel O. H., 1962, MATH Z, V78, P205, DOI DOI 10.1007/BF01195169
[10]  
Monakhov V.S., 2004, Siberian Math. Zh., V45, P1316