DeePKS: A Comprehensive Data-Driven Approach toward Chemically Accurate Density Functional Theory

被引:46
作者
Chen, Yixiao [1 ]
Zhang, Linfeng [1 ]
Wang, Han [3 ]
Weinan, E. [1 ,2 ]
机构
[1] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[3] Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100088, Peoples R China
基金
美国国家科学基金会;
关键词
APPROXIMATION;
D O I
10.1021/acs.jctc.0c00872
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We propose a general machine learning-based framework for building an accurate and widely applicable energy functional within the framework of generalized Kohn-Sham density functional theory. To this end, we develop a way of training self-consistent models that are capable of taking large datasets from different systems and different kinds of labels. We demonstrate that the functional that results from this training procedure gives chemically accurate predictions on energy, force, dipole, and electron density for a large class of molecules. It can be continuously improved when more and more data are available.
引用
收藏
页码:170 / 181
页数:12
相关论文
共 50 条
[1]   Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons [J].
Bartok, Albert P. ;
Payne, Mike C. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[2]   Generalized neural-network representation of high-dimensional potential-energy surfaces [J].
Behler, Joerg ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2007, 98 (14)
[3]   Bypassing the Kohn-Sham equations with machine learning [J].
Brockherde, Felix ;
Vogt, Leslie ;
Li, Li ;
Tuckerman, Mark E. ;
Burke, Kieron ;
Mueller, Klaus-Robert .
NATURE COMMUNICATIONS, 2017, 8
[4]   Solving the electronic structure problem with machine learning [J].
Chandrasekaran, Anand ;
Kamal, Deepak ;
Batra, Rohit ;
Kim, Chiho ;
Chen, Lihua ;
Ramprasad, Rampi .
NPJ COMPUTATIONAL MATERIALS, 2019, 5 (1)
[5]   Ground State Energy Functional with Hartree-Fock Efficiency and Chemical Accuracy [J].
Chen, Yixiao ;
Zhang, Linfeng ;
Wang, Han ;
Weinan, E. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (35) :7155-7165
[6]  
Cheng L., 2019, Thermalized (350k) qm7b, gdb-13, water, and short alkane quantum chemistry dataset including mob-ml features
[7]   Regression Clustering for Improved Accuracy and Training Costs with Molecular-Orbital-Based Machine Learning [J].
Cheng, Lixue ;
Kovachki, Nikola B. ;
Welborn, Matthew ;
Miller, Thomas F., III .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (12) :6668-6677
[8]   A universal density matrix functional from molecular orbital-based machine learning: Transferability across organic molecules [J].
Cheng, Lixue ;
Welborn, Matthew ;
Christensen, Anders S. ;
Miller, Thomas F., III .
JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (13)
[9]   Machine learning of accurate energy-conserving molecular force fields [J].
Chmiela, Stefan ;
Tkatchenko, Alexandre ;
Sauceda, Huziel E. ;
Poltavsky, Igor ;
Schuett, Kristof T. ;
Mueller, Klaus-Robert .
SCIENCE ADVANCES, 2017, 3 (05)
[10]   FCHL revisited: Faster and more accurate quantum machine learning [J].
Christensen, Anders S. ;
Bratholm, Lars A. ;
Faber, Felix A. ;
von Lilienfeld, O. Anatole .
JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (04)