Classifying exoplanet candidates with convolutional neural networks: application to the Next Generation Transit Survey

被引:28
作者
Chaushev, Alexander [1 ]
Raynard, Liam [2 ]
Goad, Michael R. [2 ]
Eigmueller, Philipp [3 ]
Armstrong, David J. [4 ,5 ]
Briegal, Joshua T. [6 ]
Burleigh, Matthew R. [2 ]
Casewell, Sarah L. [2 ]
Gi, Samuel [4 ,5 ]
Jenkins, James S. [7 ,8 ]
Nielsen, Louise D. [9 ]
Watson, Christopher A. [10 ]
West, Richard G. [4 ,5 ]
Wheatley, Peter J. [4 ,5 ]
Udry, Stephane [9 ]
Vines, Jose, I [7 ]
机构
[1] TU Berlin, Ctr Astron & Astrophys, Hardenbergstr 36, D-10623 Berlin, Germany
[2] Univ Leicester, Dept Phys & Astron, Univ Rd, Leicester LE1 7RH, Leics, England
[3] German Aerosp Ctr, Inst Planetary Res, Rutherfordstr 2, D-12489 Berlin, Germany
[4] Univ Warwick, Dept Phys, Gibbet Hill Rd, Coventry CV4 7AL, W Midlands, England
[5] Univ Warwick, Ctr Exoplanets & Habitabil, Gibbet Hill Rd, Coventry CV4 7AL, W Midlands, England
[6] Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England
[7] Univ Chile, Dept Astron, Casilla 36-D, Santiago, Chile
[8] CATA, Casilla 36-D, Santiago, Chile
[9] Univ Geneva, Observ Geneve, 51 Ch Maillettes, CH-1290 Sauverny, Switzerland
[10] Queens Univ Belfast, Astrophys Res Ctr, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland
基金
美国国家航空航天局; 英国科学技术设施理事会;
关键词
methods: data analysis; techniques: photometric; planets and satellites: detection; HOT-JUPITER; WASP-SOUTH; ALGORITHM; PROJECT; KEPLER;
D O I
10.1093/mnras/stz2058
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Vetting of exoplanet candidates in transit surveys is a manual process, which suffers from a large number of false positives and a lack of consistency. Previous work has shown that convolutional neural networks (CNN) provide an efficient solution to these problems. Here, we apply a CNN to classify planet candidates from the Next Generation Transit Survey (NGTS). For training data sets we compare both real data with injected planetary transits and fully simulated data, as well as how their different compositions affect network performance. We show that fewer hand labelled light curves can be utilized, while still achieving competitive results. With our best model, we achieve an area under the curve (AUC) score of and an accuracy of on our unseen test data, as well as and in comparison to our existing manual classifications. The neural network recovers 13 out of 14 confirmed planets observed by NGTS, with high probability. We use simulated data to show that the overall network performance is resilient to mislabelling of the training data set, a problem that might arise due to unidentified, low signal-to-noise transits. Using a CNN, the time required for vetting can be reduced by half, while still recovering the vast majority of manually flagged candidates. In addition, we identify many new candidates with high probabilities which were not flagged by human vetters.
引用
收藏
页码:5232 / 5250
页数:19
相关论文
共 66 条
[1]   The NASA Exoplanet Archive: Data and Tools for Exoplanet Research [J].
Akeson, R. L. ;
Chen, X. ;
Ciardi, D. ;
Crane, M. ;
Good, J. ;
Harbut, M. ;
Jackson, E. ;
Kane, S. R. ;
Laity, A. C. ;
Leifer, S. ;
Lynn, M. ;
McElroy, D. L. ;
Papin, M. ;
Plavchan, P. ;
Ramirez, S. V. ;
Rey, R. ;
von Braun, K. ;
Wittman, M. ;
Abajian, M. ;
Ali, B. ;
Beichman, C. ;
Beekley, A. ;
Berriman, G. B. ;
Berukoff, S. ;
Bryden, G. ;
Chan, B. ;
Groom, S. ;
Lau, C. ;
Payne, A. N. ;
Regelson, M. ;
Saucedo, M. ;
Schmitz, M. ;
Stauffer, J. ;
Wyatt, P. ;
Zhang, A. .
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2013, 125 (930) :989-999
[2]   Fast Direct Methods for Gaussian Processes [J].
Ambikasaran, Sivaram ;
Foreman-Mackey, Daniel ;
Greengard, Leslie ;
Hogg, David W. ;
O'Neil, Michael .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :252-265
[3]  
[Anonymous], ARXIV190406155
[4]  
[Anonymous], APJ
[5]   Transit shapes and self-organizing maps as a tool for ranking planetary candidates: application to Kepler and K2 [J].
Armstrong, D. J. ;
Pollacco, D. ;
Santerne, A. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 465 (03) :2634-2642
[6]  
Armstrong D. J., 2018, MNRAS, V478, P1262
[7]   HAT-P-1b:: A large-radius, low-density exoplanet transiting one member of a stellar binary [J].
Bakos, G. A. . ;
Noyes, R. W. ;
Kovacs, G. ;
Latham, D. W. ;
Sasselov, D. D. ;
Torres, G. ;
Fischer, D. A. ;
Stefanik, R. P. ;
Sato, B. ;
Johnson, J. A. ;
Pal, A. ;
Marcy, G. W. ;
Butler, R. P. ;
Esquerdo, G. A. ;
Stanek, K. Z. ;
Lazar, J. ;
Papp, I. ;
Sari, P. ;
Sipocz, B. .
ASTROPHYSICAL JOURNAL, 2007, 656 (01) :552-559
[8]   NGTS-1b: a hot Jupiter transiting an M-dwarf [J].
Bayliss, Daniel ;
Gillen, Edward ;
Eigmueller, Philipp ;
McCormac, James ;
Alexander, Richard D. ;
Armstrong, David J. ;
Booth, Rachel S. ;
Bouchy, Francois ;
Burleigh, Matthew R. ;
Cabrera, Juan ;
Casewell, Sarah L. ;
Chaushev, Alexander ;
Chazelas, Bruno ;
Csizmadia, Szilard ;
Erikson, Anders ;
Faedi, Francesca ;
Foxell, Emma ;
Gansicke, Boris T. ;
Goad, Michael R. ;
Grange, Andrew ;
Guenther, Maximilian N. ;
Hodgkin, Simon T. ;
Jackman, James ;
Jenkins, James S. ;
Lambert, Gregory ;
Louden, Tom ;
Metrailler, Lionel ;
Moyano, Maximiliano ;
Pollacco, Don ;
Poppenhaeger, Katja ;
Queloz, Didier ;
Raddi, Roberto ;
Rauer, Heike ;
Raynard, Liam ;
Smith, Alexis M. S. ;
Soto, Maritza ;
Thompson, Andrew P. G. ;
Titz-Weider, Ruth ;
Udry, Stephane ;
Walker, Simon. R. ;
Watson, Christopher A. ;
West, Richard G. ;
Wheatley, Peter J. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 475 (04) :4467-4475
[9]  
Bergstra J., 2013, Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures, P115
[10]   HAT-P-42b and HAT-P-43b Two inflated transiting hot Jupiters from the HATNet Survey [J].
Boisse, I. ;
Hartman, J. D. ;
Bakos, G. A. ;
Penev, K. ;
Csubry, Z. ;
Beky, B. ;
Latham, D. W. ;
Bieryla, A. ;
Torres, G. ;
Kovacs, G. ;
Buchhave, L. A. ;
Hansen, T. ;
Everett, M. ;
Esquerdo, G. A. ;
Szklenar, T. ;
Falco, E. ;
Shporer, A. ;
Fulton, B. J. ;
Noyes, R. W. ;
Stefanik, R. P. ;
Lazar, J. ;
Papp, I. ;
Sari, P. .
ASTRONOMY & ASTROPHYSICS, 2013, 558