Predicting Metamorphic Changes In Parkinson's Disease Patients Using Machine Learning Algorithms

被引:0
作者
Mary, G. Prema Arokia [1 ]
Suganthi, N. [2 ]
Hema, M. S. [3 ]
Dharshini, M. Hari [1 ]
Vaishaali, K. [1 ]
Sri, M. Monika [1 ]
机构
[1] Kumaraguru Coll Technol, Dept Informat Technol, Coimbatore, Tamil Nadu, India
[2] Kumaraguru Coll Technol, Dept Comp Sci & Engn, Coimbatore, Tamil Nadu, India
[3] Anurag Univ, Dept Informat Technol, Hyderabad, India
来源
BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS | 2020年 / 13卷 / 11期
关键词
HALLUCINATIONS; LOGISTIC REGRESSION; METAMORPHIC CHANGES; NORMALIZATION; PCA; PREDICTION; RNN; TRANSFORMATION;
D O I
10.21786/bbrc/13.11/30
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Parkinson's disease is a nervous disorder mainly it affects the motor activities of the human body. Manifestations start step by step; at later point it becomes the greatest obstacle to do our day to today activities. Individuals influenced with Parkinson's ailment should go through lifestyle changes and enthusiastic changes like dozing issues, disposition swings, stultification, and skin issues. The proposed methodology is to analyse the proportion of metamorphic changes of a person affected by Parkinson's disease using machine learning techniques. Principal Component Analysis (PCA), recurrent neural network and logistic regression algorithms are used for prediction. The accuracy, precision, recall and F I measure is used to assess the performance of the prediction algorithms. The dataset includes activities of daily living which from PPMI (Parkinson's Progression Markers Initiative) was taken for experimentation. Logistic regression can predict metamorphic changes with a higher accuracy of 92% for sleep dataset and 95% for Olfactory(smell) dataset when compared to other two algorithms.
引用
收藏
页码:147 / 152
页数:6
相关论文
共 17 条
[1]  
CUMMINGS JL, 1992, AM J PSYCHIAT, V149, P443
[2]  
DeMaagd George, 2015, P T, V40, P504
[3]   Melanopsin Cell Dysfunction is Involved in Sleep Disruption in Parkinson's Disease [J].
Feigl, Beatrix ;
Dumpala, Sunila ;
Kerr, Graham K. ;
Zele, Andrew J. .
JOURNAL OF PARKINSONS DISEASE, 2020, 10 (04) :1467-1476
[4]   The D1/D5 Dopamine Partial Agonist PF-06412562 in Advanced-Stage Parkinson's Disease: A Feasibility Study [J].
Huang, Xuemei ;
Lewis, Mechelle M. ;
Van Scoy, Lauren Jodi ;
De Jesus, Sol ;
Eslinger, Paul J. ;
Arnold, Amy C. ;
Miller, Amanda J. ;
Fernandez-Mendoza, Julio ;
Snyder, Bethany ;
Harrington, William ;
Kong, Lan ;
Wang, Xi ;
Sun, Dongxiao ;
Delnomdedieu, Marielle ;
Duvvuri, Sridhar ;
Mahoney, Susan E. ;
Gray, David L. ;
Mailman, Richard B. .
JOURNAL OF PARKINSONS DISEASE, 2020, 10 (04) :1515-1527
[5]  
Kanagaraj S, 2019, INT J INNOVATIVE TEC, V8
[6]   iPSC modeling of young-onset Parkinson's disease reveals a molecular signature of disease and novel therapeutic candidates [J].
Laperle, A. H. ;
Sances, S. ;
Yucer, N. ;
Dardov, V. J. ;
Garcia, V. J. ;
Ho, R. ;
Fulton, A. N. ;
Jones, M. R. ;
Roxas, K. M. ;
Avalos, P. ;
West, D. ;
Banuelos, M. G. ;
Shu, Z. ;
Murali, R. ;
Maidment, N. T. ;
Van Eyk, J. E. ;
Tagliati, M. ;
Svendsen, C. N. .
NATURE MEDICINE, 2020, 26 (02) :289-+
[7]   An introduction to logistic regression analysis and reporting [J].
Peng, CYJ ;
Lee, KL ;
Ingersoll, GM .
JOURNAL OF EDUCATIONAL RESEARCH, 2002, 96 (01) :3-14
[8]  
Prema Arokia Mary G, 2020, INT J ADV SCI TECHNO, V29, P10220
[9]  
Rao Radhakrishna.C., 2020, INDIAN J STAT JSTOR, V26, P329
[10]  
Salehinejad H., 2018, ABS180101078 ARXIV