Emerging Implications of the Concept of Hydricity in Energy-Relevant Catalytic Processes

被引:18
作者
Kumar, Abhishek [1 ]
Semwal, Shrivats [1 ]
Choudhury, Joyanta [1 ]
机构
[1] Indian Inst Sci Educ & Res Bhopal, Dept Chem, Organometall & Smart Mat Lab, Bhopal 462066, India
关键词
homogeneous catalysis; hydricity; hydrides; hydrogen evolution; transition metals; HYDRIDE DONOR ABILITIES; SOLVENT-DEPENDENT THERMOCHEMISTRY; IRON CARBONYL CLUSTERS; CO2; HYDROGENATION; LEWIS-ACID; METAL-HYDRIDES; H BOND; THERMODYNAMIC HYDRICITY; AQUEOUS HYDRICITY; KINETIC HYDRICITY;
D O I
10.1002/chem.202004499
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The "hydricity" of a species refers to its hydride-donor ability. Similar to how the pK(a) is useful for determining the extent of dissociation of an acid, the hydricity plays a vital role in understanding hydride-transfer reactions. A large number of transition-metal-catalyzed processes involve the hydride-transfer reaction as a key step. Among these, two key reactions-proton reduction to evolve H-2 and hydride transfer to CO2 to generate formate/formic acid-represent a promising solution to build a sustainable and fossil-fuel-free energy economy. Therefore, it is imperative to develop an in-depth relationship between the hydricity of transition-metal hydrides and its influencing factors, so that efficient and suitable hydride-transfer catalysts can be designed. Moreover, such profound knowledge can also help in improving existing catalysts, in terms of their efficiency and working mechanism. With this broad aim in mind, some important research has been explored in this area in recent times. This Minireview emphasizes the conceptual approaches developed thus far, to tune and apply the hydricity parameter of transition-metal hydrides for efficient H-2 evolution and CO2 reduction/hydrogenation catalysis focusing on the guiding principles for future research in this direction.
引用
收藏
页码:5842 / 5857
页数:16
相关论文
共 96 条
[1]   Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation [J].
Appel, Aaron M. ;
Bercaw, John E. ;
Bocarsly, Andrew B. ;
Dobbek, Holger ;
DuBois, Daniel L. ;
Dupuis, Michel ;
Ferry, James G. ;
Fujita, Etsuko ;
Hille, Russ ;
Kenis, Paul J. A. ;
Kerfeld, Cheal A. ;
Morris, Robert H. ;
Peden, Charles H. F. ;
Portis, Archie R. ;
Ragsdale, Stephen W. ;
Rauchfuss, Thomas B. ;
Reek, Joost N. H. ;
Seefeldt, Lance C. ;
Thauer, Rudolf K. ;
Waldrop, Grover L. .
CHEMICAL REVIEWS, 2013, 113 (08) :6621-6658
[2]   Molecular Chromophore-Catalyst Assemblies for Solar Fuel Applications [J].
Ashford, Dennis L. ;
Gish, Melissa K. ;
Vannucci, Aaron K. ;
Brennaman, M. Kyle ;
Templeton, Joseph L. ;
Papanikolas, John M. ;
Meyer, Thomas J. .
CHEMICAL REVIEWS, 2015, 115 (23) :13006-13049
[3]   Cp*Co(III) Catalysts with Proton-Responsive Ligands for Carbon Dioxide Hydrogenation in Aqueous Media [J].
Badiei, Yosra M. ;
Wang, Wan-Hui ;
Hull, Jonathan F. ;
Szalda, David J. ;
Muckerman, James T. ;
Himeda, Yuichiro ;
Fujita, Etsuko .
INORGANIC CHEMISTRY, 2013, 52 (21) :12576-12586
[4]   Photoswitchable Hydride Transfer from Iridium to 1-Methylnicotinamide Rationalized by Thermochemical Cycles [J].
Barrett, Seth M. ;
Pitman, Catherine L. ;
Walden, Andrew G. ;
Miller, Alexander J. M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (42) :14718-14721
[5]   Relative hydride, proton, and hydrogen atom transfer abilities of [HM(diphosphine)2]PF6 complexes (M = Pt, Ni) [J].
Berning, DE ;
Noll, BC ;
DuBois, DL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (49) :11432-11447
[6]   Reversible Hydrogenation of Carbon Dioxide to Formic Acid and Methanol: Lewis Acid Enhancement of Base Metal Catalysts [J].
Bernskoetter, Wesley H. ;
Hazari, Nilay .
ACCOUNTS OF CHEMICAL RESEARCH, 2017, 50 (04) :1049-1058
[7]   Lewis Acid-Assisted Formic Acid Dehydrogenation Using a Pincer-Supported Iron Catalyst [J].
Bielinski, Elizabeth A. ;
Lagaditis, Paraskevi O. ;
Zhang, Yuanyuan ;
Mercado, Brandon Q. ;
Wuertele, Christian ;
Bernskoetter, Wesley H. ;
Hazari, Nilay ;
Schneider, Sven .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (29) :10234-10237
[8]   Thermodynamic and kinetic hydricity of transition metal hydrides [J].
Brereton, Kelsey R. ;
Smith, Nicholas E. ;
Hazari, Nilay ;
Miller, Alexander J. M. .
CHEMICAL SOCIETY REVIEWS, 2020, 49 (22) :7929-7948
[9]   Thermodynamic Hydricity across Solvents: Subtle Electronic Effects and Striking Ligation Effects in Iridium Hydrides [J].
Brereton, Kelsey R. ;
Jadrich, Caleb N. ;
Stratakes, Bethany M. ;
Miller, Alexander J. M. .
ORGANOMETALLICS, 2019, 38 (16) :3104-3110
[10]   Aqueous Hydricity from Calculations of Reduction Potential and Acidity in Water [J].
Brereton, Kelsey R. ;
Bellows, Sarina M. ;
Fallah, Hengameh ;
Lopez, Antonio A. ;
Adams, Robert M. ;
Miller, Alexander J. M. ;
Jones, William D. ;
Cundari, Thomas R. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2016, 120 (50) :12911-12919