Variational principles for coupled nonlinear Schrodinger equations

被引:49
作者
Xu, Lan [1 ]
机构
[1] Donghua Univ, Coll Sci, Shanghai 200051, Peoples R China
关键词
semi-inverse method; variational principle; coupled nonlinear Schrodinger equations;
D O I
10.1016/j.physleta.2006.07.026
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Via He's semi-inverse method, a variational principle is established for coupled nonlinear Schrodinger equations arising in nonlinear directional coupler. This Letter shows the effectiveness and convenience of the semi-inverse method. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:627 / 629
页数:3
相关论文
共 21 条
[1]  
Bildik N, 2006, INT J NONLIN SCI NUM, V7, P65
[2]   Variational formulation of the Gardner's restacking algorithm [J].
Dodin, IY ;
Fisch, NJ .
PHYSICS LETTERS A, 2005, 341 (1-4) :187-192
[3]   Effects of edges in spin-1/2 bond-alternating Heisenberg chains: matrix-product variational approach [J].
Funase, K ;
Yamamoto, S .
PHYSICS LETTERS A, 2005, 334 (2-3) :220-225
[4]   Variational theory for one-dimensional longitudinal beam dynamics [J].
He, JH .
PHYSICS LETTERS A, 2006, 352 (4-5) :276-277
[5]   Construction of solitary solution and compacton-like solution by variational iteration method [J].
He, JH ;
Wu, XH .
CHAOS SOLITONS & FRACTALS, 2006, 29 (01) :108-113
[6]   Variational principles for some nonlinear partial differential equations with variable coefficients [J].
He, JH .
CHAOS SOLITONS & FRACTALS, 2004, 19 (04) :847-851
[7]  
He JH, 1997, INT J TURBO JET ENG, V14, P23
[8]   Variational approach to (2+1)-dimensional dispersive long water equations [J].
He, JH .
PHYSICS LETTERS A, 2005, 335 (2-3) :182-184
[9]   Variational principle for non-Newtonian lubrication: Rabinowitsch fluid model [J].
He, JH .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 157 (01) :281-286
[10]  
He JH, 2003, INT J NONLINEAR SCI, V4, P313, DOI 10.1515/IJNSNS.2003.4.3.313