Enhancement of maximum energy product in exchange-coupled BaFe12O19/Fe3O4 core-shell-like nanocomposites

被引:28
作者
Mohseni, Farzin [1 ,2 ]
Pullar, Robert C. [1 ]
Vieira, Joaquim M. [1 ]
Amaral, Joao S. [2 ]
机构
[1] Univ Aveiro, Aveiro Inst Mat, CICECO, Dept Mat & Ceram Engn, P-3810193 Aveiro, Portugal
[2] Univ Aveiro, Aveiro Inst Mat, CICECO, Dept Phys, P-3810193 Aveiro, Portugal
关键词
BaFe12O19; Hexagonal ferrite; Magnetite Fe3O4; Magnetic exchange coupling; Nanocomposite hard magnets; Exchange-spring magnets; BARIUM HEXAFERRITE; MAGNETIC-PROPERTIES; REMANENCE; ALLOYS; SOFT;
D O I
10.1016/j.jallcom.2019.07.162
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recent economic and environmental concerns have prompted intensive research on the development and optimisation of rare-earth free permanent magnets, in particular of ferrites. M-type barium hexaferrites (BaFe12O19, BaM) are a type of technologically important, low-cost permanent magnet, with high Tc and high resistance to oxidation and corrosion. Their magnetic performance can be improved upon by exploring exchange-coupling mechanisms, to increase their competitiveness with existing rare-earth magnets. The present investigation explores core-shell-like BaM/Fe3O4 nanocomposites, where BaM flake-like particles where prepared via the sol-gel auto-combustion method, and then coated by magnetite spinel nanoparticles via a hydrothermal method, requiring no post-heat treatment. We show how optimised hard to soft magnetic phase ratio and preparation conditions lead to a significant enhancement to the saturation magnetization and remanence, and consequently to an increase of over 75% in the maximum energy product, compared to the parent BaM hexagonal ferrite compound. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:120 / 126
页数:7
相关论文
共 32 条
[1]  
[Anonymous], J APPL PHYS
[2]   Synthesis of barium hexaferrite by the co-precipitation method using acetate precursor [J].
Ataie, A ;
Heshmati-Manesh, S ;
Kazempour, H .
JOURNAL OF MATERIALS SCIENCE, 2002, 37 (10) :2125-2128
[3]   Bulk nanocomposite magnets produced by dynamic shock compaction [J].
Chen, KH ;
Jin, ZQ ;
Li, J ;
Kennedy, G ;
Wang, ZL ;
Thadhani, NN ;
Zeng, H ;
Cheng, SF ;
Liu, JP .
JOURNAL OF APPLIED PHYSICS, 2004, 96 (02) :1276-1278
[4]   REMANENCE ENHANCEMENT IN MECHANICALLY ALLOYED ISOTROPIC SM7FE93-NITRIDE [J].
DING, J ;
MCCORMICK, PG ;
STREET, R .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1993, 124 (1-2) :1-4
[5]   Micromagnetic Study on the Magnetization Reversal of Barium Hexaferrite (BaFe12O19) Thin Film [J].
Djuhana, Dede ;
Oktri, Dita ;
Kurniawan, Candra .
MAKARA JOURNAL OF SCIENCE, 2018, 22 (04) :198-204
[6]   Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient [J].
Gutfleisch, Oliver ;
Willard, Matthew A. ;
Bruck, Ekkes ;
Chen, Christina H. ;
Sankar, S. G. ;
Liu, J. Ping .
ADVANCED MATERIALS, 2011, 23 (07) :821-842
[7]   Magnetic properties of melt-spun Nd-rich NdFeB alloys with Dy and Ga substitutions [J].
Harland, CL ;
Davies, HA .
JOURNAL OF ALLOYS AND COMPOUNDS, 1998, 281 (01) :37-40
[8]   Formation of a magnetic composite by reduction of Co-Nd doped strontium hexaferrite in a hydrogen gas flow [J].
Herme, C. A. ;
Bercoff, P. G. ;
Jacobo, S. E. .
PHYSICA B-CONDENSED MATTER, 2012, 407 (16) :3102-3105
[9]   Exchange-spring mechanism of soft and hard ferrite nanocomposites [J].
Hoque, S. Manjura ;
Srivastava, C. ;
Kumar, V. ;
Venkatesh, N. ;
Das, H. N. ;
Saha, D. K. ;
Chattopadhyay, K. .
MATERIALS RESEARCH BULLETIN, 2013, 48 (08) :2871-2877
[10]   Solvothermal reduction synthesis and characterization of superparamagnetic magnetite nanoparticles [J].
Hou, YL ;
Yu, JF ;
Gao, S .
JOURNAL OF MATERIALS CHEMISTRY, 2003, 13 (08) :1983-1987