Coupled Tensor Model of Atrial Fibrillation ECG

被引:0
作者
de Oliveira, Pedro Marinho R. [1 ]
Zarzoso, Vicente [1 ]
Fernandes, Carlos Alexandre R. [2 ]
机构
[1] Univ Cote dAzur, I3S Lab, CNRS, CS 40121, F-06903 Sophia Antipolis, France
[2] Univ Fed Ceara, Sobral, Brazil
来源
28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020) | 2021年
关键词
Atrial Fibrillation; Blind Source Separation; Block Term Decomposition; Coupled Tensor Model; Electrocardiogram;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Atrial fibrillation (AF) is the most frequent cardiac arrhythmia diagnosed in clinical practice, identified by an uncoordinated and irregular atrial depolarization. However, its electrophysiological mechanisms are still not clearly understood, increasing the intensive clinical research into this challenging cardiac condition in the past few years. The noninvasive extraction of the atrial activity (AA) from multi-lead electrocardiogram (ECG) recordings by signal processing techniques has helped in better understanding this complex arrhythmia. In particular, tensor decomposition techniques have proven to be powerful tools in this task, overcoming the limitations of matrix factorization methods. Exploring the spatial as well as the temporal diversity of ECG recordings, this contribution puts forward a novel noninvasive AA extraction method that models consecutive AF ECG segments as a coupled block-term tensor decomposition, assuming that they share the same spatial signatures. Experiments on synthetic and real data, the latter acquired from persistent AF patients, validate the proposed coupled tensor approach, which provides satisfactory performance with reduced computational cost.
引用
收藏
页码:915 / 919
页数:5
相关论文
共 16 条
  • [1] Acar E, 2017, EUR SIGNAL PR CONF, P643, DOI 10.23919/EUSIPCO.2017.8081286
  • [2] [Anonymous], 2008, SYNTHESIS LECT BIOME
  • [3] Spatiotemporal blind source separation approach to atrial activity estimation in atrial tachyarrhythmias
    Castells, F
    Rieta, JJ
    Millet, J
    Zarzoso, V
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2005, 52 (02) : 258 - 267
  • [4] BLIND SEPARATION OF EXPONENTIAL POLYNOMIALS AND THE DECOMPOSITION OF A TENSOR IN RANK-(Lr, Lr, 1) TERMS
    De Lathauwer, Lieven
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2011, 32 (04) : 1451 - 1474
  • [5] de Oliveira P. M. R., 2019, Journal of Communication and Information Systems, V34, P111
  • [6] Source Analysis and Selection Using Block Term Decomposition in Atrial Fibrillation
    de Oliveira, Pedro Marinho R.
    Zarzoso, Vicente
    [J]. LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION (LVA/ICA 2018), 2018, 10891 : 46 - 56
  • [7] Dolinsky Pavol., 2018, Acta Electrotechnica et Informatica, V18, P3, DOI [10.15546/aeei-2018-0019, DOI 10.15546/AEEI-2018-0019]
  • [8] Hunyadi B, 2016, EUR SIGNAL PR CONF, P240, DOI 10.1109/EUSIPCO.2016.7760246
  • [9] 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation
    January, Craig T.
    Wann, L. Samuel
    Alpert, Joseph S.
    Calkins, Hugh
    Cigarroa, Joaquin E.
    Cleveland, Joseph C.
    Conti, Jamie B.
    Ellinor, Patrick T.
    Ezekowitz, Michael D.
    Field, Michael E.
    Murray, Katherine T.
    Sacco, Ralph L.
    Stevenson, William G.
    Tchou, Patrick J.
    Tracy, Cynthia M.
    Yancy, Clyde W.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2014, 64 (21) : E1 - E76
  • [10] Atrial fibrillation: the current epidemic
    Morillo, Carlos A.
    Banerjee, Amitava
    Perel, Pablo
    Wood, David
    Jouven, Xavier
    [J]. JOURNAL OF GERIATRIC CARDIOLOGY, 2017, 14 (03) : 195 - 203