Bounds for the spectrum of a two parameter matrix eigenvalue problem

被引:3
|
作者
Gil, Michael [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, POB 653, IL-84105 Beer Sheva, Israel
关键词
Two parameter matrix eigenvalue problem; Spectrum; Ostrowsky-Schneider theorem; VARIATIONAL APPROACH;
D O I
10.1016/j.laa.2015.05.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the two parameter eigenvalue problem T(j)v(j) - lambda(1)A(j1)v(j) - lambda(2)A(j2)v(j) = 0, where lambda(j) is an element of C; T-j, A(jk) (j, k = 1,2) are matrices. Bounds for the spectral radius of that problem are suggested. Our main tool is a norm estimate for the operator inverse to the operator A(11) circle times A(22) - A(12) circle times A(21), where circle times means the tensor product. In addition, by virtue of that norm estimate and the Ostrowsky-Schneider theorem we establish a condition that provides the conservation of the number of the eigenvalues of the considered problem in a half-plane. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:201 / 218
页数:18
相关论文
共 50 条
  • [1] Bounds for the spectrum of a two-parameter eigenvalue problem in a Hilbert space
    Gil, Michael
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2020, 96 (1-2): : 121 - 129
  • [2] On spectral variation of two-parameter matrix eigenvalue problem
    Gil, Michael
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2015, 87 (3-4): : 269 - 278
  • [3] LOCALIZATION OF THE SPECTRUM OF THE EIGENVALUE PROBLEM NONLINEAR IN THE SPECTRAL PARAMETER
    ZAKHARCHUK, VT
    SAVENKOVA, NP
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1990, 30 (03): : 102 - 104
  • [4] ON THE SINGULAR TWO-PARAMETER EIGENVALUE PROBLEM
    Muhic, Andrej
    Plestenjak, Bor
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2009, 18 : 420 - 437
  • [5] On the singular two-parameter eigenvalue problem II
    Kosir, Tomaz
    Plestenjak, Bor
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 649 : 433 - 451
  • [6] THE NUMERIC RANGE OF THE TWO-PARAMETER EIGENVALUE PROBLEM
    Mammadov, Eldar Sh.
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON CONTROL AND OPTIMIZATION WITH INDUSTRIAL APPLICATIONS, VOL II, 2018, : 214 - 216
  • [7] On linearizations of the quadratic two-parameter eigenvalue problem
    Hochstenbach, Michiel E.
    Muhic, Andrej
    Plestenjak, Bor
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (08) : 2725 - 2743
  • [8] GUARANTEED EIGENVALUE BOUNDS FOR THE STEKLOV EIGENVALUE PROBLEM
    You, Chun'guang
    Xie, Hehu
    Liu, Xuefeng
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (03) : 1395 - 1410
  • [9] EFFICIENT APPROXIMATION OF NOVEL RESIDUAL BOUNDS FOR A PARAMETER DEPENDENT QUADRATIC EIGENVALUE PROBLEM
    Ugrica, Matea
    Truhar, Ninoslav
    Tomljanovic, Zoran
    Karow, Michael
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2024,
  • [10] On the quadratic two-parameter eigenvalue problem and its linearization
    Muhic, Andrej
    Plestenjak, Bor
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (10) : 2529 - 2542