High-Content Analysis of Breast Cancer Using Single-Cell Deep Transfer Learning

被引:49
|
作者
Kandaswamy, Chetak [1 ,2 ,3 ]
Silva, Luis M. [1 ,2 ,4 ]
Alexandre, Luis A. [5 ]
Santos, Jorge M. [1 ,2 ,6 ]
机构
[1] Inst Engn Biomed INEB, Rua Campo Alegre 823, P-4150180 Oporto, Portugal
[2] Univ Porto, Inst Invest & Inovacao Saude, Rua Campo Alegre 823, P-4100 Oporto, Portugal
[3] Univ Porto, Fac Engn, Dept Engn Eletrotecn & Comp, Rua Campo Alegre 823, P-4100 Oporto, Portugal
[4] Univ Aveiro, Dept Matemat, P-3800 Aveiro, Portugal
[5] Univ Beira Interior, Inst Telecomunicacoes, Covilha, Portugal
[6] Inst Politecn Porto, Inst Super Engn, Dept Matemat, Oporto, Portugal
关键词
high-content screening; image analysis; deep transfer learning; cancer drug discovery; NEURAL-NETWORKS;
D O I
10.1177/1087057115623451
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
High-content analysis has revolutionized cancer drug discovery by identifying substances that alter the phenotype of a cell, which prevents tumor growth and metastasis. The high-resolution biofluorescence images from assays allow precise quantitative measures enabling the distinction of small molecules of a host cell from a tumor. In this work, we are particularly interested in the application of deep neural networks (DNNs), a cutting-edge machine learning method, to the classification of compounds in chemical mechanisms of action (MOAs). Compound classification has been performed using image-based profiling methods sometimes combined with feature reduction methods such as principal component analysis or factor analysis. In this article, we map the input features of each cell to a particular MOA class without using any treatment-level profiles or feature reduction methods. To the best of our knowledge, this is the first application of DNN in this domain, leveraging single-cell information. Furthermore, we use deep transfer learning (DTL) to alleviate the intensive and computational demanding effort of searching the huge parameter's space of a DNN. Results show that using this approach, we obtain a 30% speedup and a 2% accuracy improvement.
引用
收藏
页码:252 / 259
页数:8
相关论文
共 50 条
  • [1] High-content single-cell combinatorial indexing
    Ryan M. Mulqueen
    Dmitry Pokholok
    Brendan L. O’Connell
    Casey A. Thornton
    Fan Zhang
    Brian J. O’Roak
    Jason Link
    Galip Gürkan Yardımcı
    Rosalie C. Sears
    Frank J. Steemers
    Andrew C. Adey
    Nature Biotechnology, 2021, 39 : 1574 - 1580
  • [2] High-content single-cell combinatorial indexing
    Mulqueen, Ryan M.
    Pokholok, Dmitry
    O'Connell, Brendan L.
    Thornton, Casey A.
    Zhang, Fan
    O'Roak, Brian J.
    Link, Jason
    Yardimci, Galip Gurkan
    Sears, Rosalie C.
    Steemers, Frank J.
    Adey, Andrew C.
    NATURE BIOTECHNOLOGY, 2021, 39 (12) : 1574 - +
  • [3] High-content single-cell analysis on-chip using a laser microarray scanner
    Zhou, Jing
    Wu, Yu
    Lee, Sang-Kwon
    Fan, Rong
    LAB ON A CHIP, 2012, 12 (23) : 5025 - 5033
  • [4] Single-Cell, High-Content Microscopy Analysis of BK Polyomavirus Infection
    Procario, Megan C. C.
    Sexton, Jonathan Z. Z.
    Halligan, Benjamin S. S.
    Imperiale, Michael J. J.
    MICROBIOLOGY SPECTRUM, 2023, 11 (03)
  • [5] High-Content Quantification of Single-Cell Immune Dynamics
    Junkin, Michael
    Kaestli, Alicia J.
    Cheng, Zhang
    Jordi, Christian
    Albayrak, Cem
    Hoffmann, Alexander
    Tay, Savas
    CELL REPORTS, 2016, 15 (02): : 411 - 422
  • [6] Exploring the neuropsychiatric spectrum using high-content functional analysis of single-cell signaling networks
    Santiago G. Lago
    Jakub Tomasik
    Geertje F. van Rees
    Jordan M. Ramsey
    Frieder Haenisch
    Jason D. Cooper
    Jantine A. Broek
    Paula Suarez-Pinilla
    Tillmann Ruland
    Bonnie Auyeug
    Olya Mikova
    Nikolett Kabacs
    Volker Arolt
    Simon Baron-Cohen
    Benedicto Crespo-Facorro
    Sabine Bahn
    Molecular Psychiatry, 2020, 25 : 2355 - 2372
  • [7] Exploring the neuropsychiatric spectrum using high-content functional analysis of single-cell signaling networks
    Lago, Santiago G.
    Tomasik, Jakub
    van Rees, Geertje F.
    Ramsey, Jordan M.
    Haenisch, Frieder
    Cooper, Jason D.
    Broek, Jantine A.
    Suarez-Pinilla, Paula
    Ruland, Tillmann
    Auyeug, Bonnie
    Mikova, Olya
    Kabacs, Nikolett
    Arolt, Volker
    Baron-Cohen, Simon
    Crespo-Facorro, Benedicto
    Bahn, Sabine
    MOLECULAR PSYCHIATRY, 2020, 25 (10) : 2355 - 2372
  • [8] Deep learning and transfer learning identify breast cancer survival subtypes from single-cell imaging data
    Yadav, Shashank
    Zhou, Shu
    He, Bing
    Du, Yuheng
    Garmire, Lana X.
    COMMUNICATIONS MEDICINE, 2023, 3 (01):
  • [9] Deep learning and transfer learning identify breast cancer survival subtypes from single-cell imaging data
    Shashank Yadav
    Shu Zhou
    Bing He
    Yuheng Du
    Lana X. Garmire
    Communications Medicine, 3
  • [10] DeLHCA: Deep transfer learning for high-content analysis of the effects of drugs on immune cells
    Hussain, Shaista
    Das, Ankit
    Nguyen, Binh P.
    Marzuki, Mardiana
    Lin, Shuping
    Kumar, Arun
    Wright, Graham
    Singhal, Amit
    PROCEEDINGS OF THE 2019 IEEE REGION 10 CONFERENCE (TENCON 2019): TECHNOLOGY, KNOWLEDGE, AND SOCIETY, 2019, : 796 - 801