ENERGY CRITICAL NLS IN TWO SPACE DIMENSIONS

被引:47
作者
Colliander, J. [1 ]
Ibrahim, S. [2 ]
Majdoub, M. [3 ]
Masmoudi, N. [4 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[2] Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA
[3] Fac Sci Tunis, Dept Math, Tunis 1060, Tunisia
[4] NYU, Courant Inst Math Sci, Dept Math, New York, NY 10012 USA
关键词
Nonlinear Schrodinger equation; energy critical; well-posedness; NONLINEAR SCHRODINGER-EQUATION; GLOBAL WELLPOSEDNESS; ROUGH SOLUTIONS; WELL-POSEDNESS; CAUCHY-PROBLEM; ILL-POSEDNESS; KLEIN-GORDON; SCATTERING; INEQUALITY; INSTABILITY;
D O I
10.1142/S0219891609001927
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the initial value problem for a defocusing nonlinear Schrodinger equation with exponential nonlinearity i partial derivative(t)u + Delta u = u(e(4 pi|u|2) - 1) in R-t x R-x(2). We identify subcritical, critical, and supercritical regimes in the energy space. We establish global well-posedness in the subcritical and critical regimes. Well-posedness fails to hold in the supercritical case.
引用
收藏
页码:549 / 575
页数:27
相关论文
共 39 条
[1]   Trudinger type inequalities in RN and their best exponents [J].
Adachi, S ;
Tanaka, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (07) :2051-2057
[2]  
[Anonymous], 1983, MONOGRAPH MATH
[3]  
[Anonymous], MONOGRAPH MATH
[4]   Scattering in the energy space and below for 3D NLS [J].
Bourgain, J .
JOURNAL D ANALYSE MATHEMATIQUE, 1998, 75 (1) :267-297
[5]   Global wellposedness of defocusing critical nonlinear Schrodinger equation in the radial case [J].
Bourgain, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (01) :145-171
[6]  
Bourgain J., 1999, AM MATH SOC C PUBLIC, V46, DOI DOI 10.1090/COLL/046
[7]   Instability for the semiclassical non-linear Schrodinger equation [J].
Burq, N ;
Zworski, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 260 (01) :45-58
[8]  
Burq N, 2002, MATH RES LETT, V9, P323
[9]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836
[10]  
Cazenave T, 2003, Semilinear Schrodinger Equations