Haldane phase on the sawtooth lattice: Edge states, entanglement spectrum, and the flat band

被引:17
作者
Gremaud, Benoit [1 ,2 ,3 ,4 ]
Batrouni, G. George [1 ,2 ,5 ]
机构
[1] CNRS UNS NUS NTU Int Joint Res Unit UMI 3654, MajuLab, Singapore, Singapore
[2] Natl Univ Singapore, Ctr Quantum Technol, 2 Sci Dr 3, Singapore 117542, Singapore
[3] Natl Univ Singapore, Dept Phys, 2 Sci Dr 3, Singapore 117542, Singapore
[4] ENS PSL Res Univ, UPMC Sorbonne Univ, CNRS, Lab Kastler Brossel,Coll France, 4 Pl Jussieu, F-75005 Paris, France
[5] Univ Cote dAzur, INLN, CNRS, Nice, France
基金
新加坡国家研究基金会;
关键词
ANTIFERROMAGNETS; SUPERSOLIDS; TRANSITION; SUPERFLUID; INSULATOR; ATOMS;
D O I
10.1103/PhysRevB.95.165131
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using density matrix renormalization group numerical calculations, we study the phase diagram of the half filled Bose-Hubbard system in the sawtooth lattice with strong frustration in the kinetic energy term. We focus in particular on values of the hopping terms which produce a flat band and show that, in the presence of contact and near neighbor repulsion, three phases exist: Mott insulator (MI), charge density wave (CDW), and the topological Haldane insulating (HI) phase which displays edge states and particle imbalance between the two ends of the system. We find that, even though the entanglement spectrum in the Haldane phase is not doubly degenerate, it is in excellent agreement with the entanglement spectrum of the Affleck-Kennedy-Lieb-Tasaki (AKLT) state built in the Wannier basis associated with the flat band. This emphasizes that the absence of degeneracy in the entanglement spectrum is not necessarily a signature of a nontopological phase, but rather that the (hidden) protecting symmetry involves nonlocal states. Finally, we also show that the HI phase is stable against small departure from flatness of the band but is destroyed for larger ones.
引用
收藏
页数:10
相关论文
共 33 条
[1]   RIGOROUS RESULTS ON VALENCE-BOND GROUND-STATES IN ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
PHYSICAL REVIEW LETTERS, 1987, 59 (07) :799-802
[2]   Supersolid phases in the one-dimensional extended soft-core bosonic Hubbard model [J].
Batrouni, G. G. ;
Herbert, F. ;
Scalettar, R. T. .
PHYSICAL REVIEW LETTERS, 2006, 97 (08)
[3]   Competing phases, phase separation, and coexistence in the extended one-dimensional bosonic Hubbard model [J].
Batrouni, G. G. ;
Rousseau, V. G. ;
Scalettar, R. T. ;
Gremaud, B. .
PHYSICAL REVIEW B, 2014, 90 (20)
[4]   Competing Supersolid and Haldane Insulator Phases in the Extended One-Dimensional Bosonic Hubbard Model [J].
Batrouni, G. G. ;
Scalettar, R. T. ;
Rousseau, V. G. ;
Gremaud, B. .
PHYSICAL REVIEW LETTERS, 2013, 110 (26)
[5]   SUPERSOLIDS IN THE BOSE-HUBHARD HAMILTONIAN [J].
BATROUNI, GG ;
SCALETTAR, RT ;
ZIMANYI, GT ;
KAMPF, AP .
PHYSICAL REVIEW LETTERS, 1995, 74 (13) :2527-2530
[6]   Phase separation in supersolids [J].
Batrouni, GG ;
Scalettar, RT .
PHYSICAL REVIEW LETTERS, 2000, 84 (07) :1599-1602
[7]   The ALPS project release 2.0: open source software for strongly correlated systems [J].
Bauer, B. ;
Carr, L. D. ;
Evertz, H. G. ;
Feiguin, A. ;
Freire, J. ;
Fuchs, S. ;
Gamper, L. ;
Gukelberger, J. ;
Gull, E. ;
Guertler, S. ;
Hehn, A. ;
Igarashi, R. ;
Isakov, S. V. ;
Koop, D. ;
Ma, P. N. ;
Mates, P. ;
Matsuo, H. ;
Parcollet, O. ;
Pawlowski, G. ;
Picon, J. D. ;
Pollet, L. ;
Santos, E. ;
Scarola, V. W. ;
Schollwoeck, U. ;
Silva, C. ;
Surer, B. ;
Todo, S. ;
Trebst, S. ;
Troyer, M. ;
Wall, M. L. ;
Werner, P. ;
Wessel, S. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
[8]   Quantized Pumping and Topology of the Phase Diagram for a System of Interacting Bosons [J].
Berg, Erez ;
Levin, Michael ;
Altman, Ehud .
PHYSICAL REVIEW LETTERS, 2011, 106 (11)
[9]   Rise and fall of hidden string order of lattice bosons [J].
Berg, Erez ;
Dalla Torre, Emanuele G. ;
Giamarchi, Thierry ;
Altman, Ehud .
PHYSICAL REVIEW B, 2008, 77 (24)
[10]   Supersolid phase of hard-core bosons on a triangular lattice [J].
Boninsegni, M ;
Prokof'ev, N .
PHYSICAL REVIEW LETTERS, 2005, 95 (23)