Epidemic spreading model of complex dynamical network with the heterogeneity of nodes

被引:43
作者
Hong, Sheng [1 ]
Yang, Hongqi [2 ]
Zhao, Tingdi [1 ]
Ma, Xiaomin [3 ]
机构
[1] Beihang Univ, Sci & Technol Reliabil & Environm Engn Lab, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R China
[2] Minist Ind & Informat Technol, Elect Res Inst 5, Guangzhou, Guangdong, Peoples R China
[3] Oral Roberts Univ, Dept Engn & Phys, Tulsa, OK USA
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
resistance factor; heterogeneity; complex dynamical network; epidemic spreading model; propagation dynamics; SIRS MODEL; SYNCHRONIZATION; TRANSMISSION; STABILITY; WORMS;
D O I
10.1080/00207721.2015.1022890
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we model epidemic spreading by considering the mobility of nodes in complex dynamical network based on mean field theory using differential equations. Moreover, a resistance factor which can characterise the impact of individual's difference on the propagation dynamics in complex dynamical network is proposed by considering the influence of total number of connections and the continuous time to remain in contact. The effect of heterogeneity on the evolution process of propagation dynamics is explored by simulation. Extensive simulations are conducted to study the key influence parameters and the influence of them on the spreading dynamics, which are helpful to the understanding of epidemic spreading mechanism and the designing of effective control strategies.
引用
收藏
页码:2745 / 2752
页数:8
相关论文
共 29 条
  • [1] BERETTA E, 1995, J MATH BIOL, V33, P250, DOI 10.1007/BF00169563
  • [2] Complex networks: Structure and dynamics
    Boccaletti, S.
    Latora, V.
    Moreno, Y.
    Chavez, M.
    Hwang, D. -U.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5): : 175 - 308
  • [3] Broch J., 1998, MobiCom'98. Proceedings of Fourth Annual ACM/IEEE International Conference on Mobile Computing and Networking, P85, DOI 10.1145/288235.288256
  • [4] Disease spreading in populations of moving agents
    Buscarino, A.
    Fortuna, L.
    Frasca, M.
    Latora, V.
    [J]. EPL, 2008, 82 (03)
  • [5] A survey of mobility models for ad hoc network research
    Camp, T
    Boleng, J
    Davies, V
    [J]. WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2002, 2 (05) : 483 - 502
  • [6] Gong Y. W., 2012, ACTA PHYS SINICA, V61
  • [7] HETHCOTE H W, 1976, Mathematical Biosciences, V28, P335, DOI 10.1016/0025-5564(76)90132-2
  • [8] Adaptive lag synchronization for uncertain complex dynamical network with delayed coupling
    Ji, D. H.
    Jeong, S. C.
    Park, Ju H.
    Lee, S. M.
    Won, S. C.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (09) : 4872 - 4880
  • [9] Johnson D. B., 1996, MOBILE COMPUTING, P153, DOI [DOI 10.1007/978-0-585-29603-6_5, DOI 10.1007/978-0-585-29603-65]
  • [10] Orientation accuracy analysis of multiple satellite networks using epidemic model
    Kang, Bei
    Won, Chang-Hee
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2009, 40 (08) : 799 - 820