POSITIVE SOLUTIONS OF A NONLINEAR STURM-LIOUVILLE BOUNDARY-VALUE PROBLEM

被引:0
作者
Cerda, Patricio [1 ]
Ubilla, Pedro [1 ]
机构
[1] Univ Santiago Chile, Fac Ciencias, Dept Matemat & Ciencia Computac, Santiago, Chile
关键词
Sturm-Liouville problems; positive solutions; fixed points; topological degree; SUPERLINEAR NONLINEARITIES; EXISTENCE; 2ND-ORDER; EQUATIONS;
D O I
10.1017/S0013091507000120
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish the existence of positive solutions of the Sturm-Liouville problem - (p(s, u)u')' = (q) over cap (s)u(p)h(s, u, u') in (0, 1), u(0) = 0 = u(1), where p(s, u) = 1/(a(s) + cg(u)). We assume g and (q) over cap to be non-negative, continuous functions, a(s) is a positive continuous function, c >= 0, p > 1, and the function h is sub-quadratic with respect to u'. We combine a priori estimates with a fixed-point result of Krasnosel'skii to obtain the existence of a positive solution.
引用
收藏
页码:561 / 568
页数:8
相关论文
共 17 条
[1]   The existence of positive solutions for the Sturm-Liouville boundary value problems [J].
Agarwal, RP ;
Hong, HL ;
Yeh, CC .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1998, 35 (09) :89-96
[2]   Existence results for superlinear semipositone BVP's [J].
Anuradha, V ;
Hai, DD ;
Shivaji, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (03) :757-763
[3]  
Brezis H., 1977, Commun. Partial Differ. Equ., V2, P601, DOI 10.1080/03605307708820041
[4]   Existence theory for functional p-Laplacian equations with variable exponents [J].
Cabada, A ;
Pouso, RL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (02) :557-572
[5]   EXISTENCE OF SOLUTIONS FOR SOME NONLINEAR SINGULAR BOUNDARY-VALUE-PROBLEMS [J].
DUNNINGER, DR ;
KURTZ, JC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 115 (02) :396-405
[6]   A PRIORI BOUNDS AND EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR NONLINEAR BOUNDARY-VALUE-PROBLEMS [J].
DUNNINGER, DR ;
KURTZ, JC .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (03) :595-609
[7]  
Garner J. B., 1988, Applicable Analysis, V30, P101, DOI 10.1080/00036818808839795
[8]  
Krasnoselskii M. A, 1964, Positive Solutions of Operator Equations
[9]   Multiple positive solutions of semi-positone Sturm-Liouville boundary value problems [J].
Lan, KQ .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2006, 38 :283-293
[10]   On the existence and nonexistence of positive solutions for nonlinear Sturm-Liouville boundary value problems [J].
Li, YX .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 304 (01) :74-86