On changes of variable that preserve convergence and absolute convergence of Fourier-Haar series

被引:2
作者
Bitsadze, K. R. [1 ]
机构
[1] Ivane Javakhishvili Tbilisi State Univ, Tbilisi, Georgia
关键词
Fourier-Haar series; changes of variable;
D O I
10.1070/SM9033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is established that among all the differentiable homeomorphic changes of variable only the functions phi(1) (x) = x and phi(2) (x) = 1 - x for x is an element of [0, 1] preserve convergence everywhere of the Fourier-Haar series. The same is true for absolute convergence everywhere.
引用
收藏
页码:783 / 808
页数:26
相关论文
共 8 条
[1]  
Alexits G., 1960, INT SER MONOGR PURE
[2]  
Bitsadze K., 1999, B GEORGIAN ACAD SCI, V159, P209
[3]   ON THE FOURIER-HAAR SERIES OF COMPOSITE FUNCTIONS [J].
BUGADZE, VM .
MATHEMATICS OF THE USSR-SBORNIK, 1992, 72 (01) :163-188
[4]  
Kashin B. S., 1984, ORTHOGONAL SERIES
[5]   MODIFICATIONS OF FUNCTIONS AND FOURIER-SERIES [J].
OLEVSKII, AM .
RUSSIAN MATHEMATICAL SURVEYS, 1985, 40 (03) :181-224
[6]  
Ul'janov PL., 1964, MAT SBORNIK, V63, P356
[7]  
Ul'yanov P.L., 1978, ANAL MATH, V4, P225, DOI [10.1007/BF01908991, DOI 10.1007/BF01908991]
[8]  
ULYANOV PL, 1967, MAT SBORNIK, V72, P193