The eclectic flavor symmetry of the Z2 orbifold

被引:46
作者
Baur, Alexander [1 ,4 ]
Kade, Moritz [1 ]
Nilles, Hans Peter [2 ,3 ]
Ramos-Sanchez, Saul [1 ,4 ]
Vaudrevange, Patrick K. S. [1 ]
机构
[1] Tech Univ Munich, Phys Dept T75, James Franck Str 1, D-85748 Garching, Germany
[2] Univ Bonn, Bethe Ctr Theoret Phys, Nussallee 12, D-53115 Bonn, Germany
[3] Univ Bonn, Phys Inst, Nussallee 12, D-53115 Bonn, Germany
[4] Univ Nacl Autonoma Mexico, Inst Fis, POB 20-364, Mexico City 01000, DF, Mexico
关键词
Compactification and String Models; Discrete Symmetries; Field Theories in Higher Dimensions; Superstrings and Heterotic Strings; COMPACTIFICATION; REPRESENTATIONS; STRINGS; CP;
D O I
10.1007/JHEP02(2021)018
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Modular symmetries naturally combine with traditional flavor symmetries and CP, giving rise to the so-called eclectic flavor symmetry. We apply this scheme to the two-dimensional Z(2) orbifold, which is equipped with two modular symmetries SL(2, Z)(T) and SL(2, Z)(U) associated with two moduli: the Kahler modulus T and the complex structure modulus U. The resulting finite modular group is ((S(3)x S-3) x Z(4)) x Z(2) including mirror symmetry (that exchanges T and U) and a generalized CP-transformation. Together with the traditional flavor symmetry (D-8 x D-8)/Z(2), this leads to a huge eclectic flavor group with 4608 elements. At specific regions in moduli space we observe enhanced unified flavor symmetries with as many as 1152 elements for the tetrahedral shaped orbifold and < T > = < U > = exp (pi i/3). This rich eclectic structure implies interesting (modular) flavor groups for particle physics models derived form string theory.
引用
收藏
页数:29
相关论文
共 36 条
[1]   Loop Fayet-Iliopoulos terms in T2/Z2 models: Instability and moduli stabilization [J].
Abe, Hiroyuki ;
Kobayashi, Tatsuo ;
Uemura, Shohei ;
Yamamoto, Junji .
PHYSICAL REVIEW D, 2020, 102 (04)
[2]   STRUCTURE AND REPRESENTATIONS OF THE SYMMETRY GROUP OF THE 4-DIMENSIONAL CUBE [J].
BAAKE, M ;
GEMUNDEN, B ;
OEDINGEN, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (06) :944-953
[3]  
Baur A., 2019, NUCL PHYS B, V947, P114737, DOI [10.1016/j.nuclphysb.2019.114737, DOI 10.1016/J.NUCLPHYSB.2019.114737]
[4]   Unification of flavor, CP, and modular symmetries [J].
Baur, Alexander ;
Nilles, Hans Peter ;
Trautner, Andreas ;
Vaudrevange, Patrick K. S. .
PHYSICS LETTERS B, 2019, 795 :7-14
[5]  
Charlap L, 1986, UNIVERSITEXT
[6]   A note on the predictions of models with modular flavor symmetries [J].
Chen, Mu-Chun ;
Ramos-Sanchez, Saul ;
Ratz, Michael .
PHYSICS LETTERS B, 2020, 801
[7]   Non-Abelian discrete R symmetries [J].
Chen, Mu-Chun ;
Ratz, Michael ;
Trautner, Andreas .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (09)
[8]  
Dent T, 2001, PHYS REV D, V64
[9]   STRINGS ON ORBIFOLDS .2. [J].
DIXON, L ;
HARVEY, J ;
VAFA, C ;
WITTEN, E .
NUCLEAR PHYSICS B, 1986, 274 (02) :285-314
[10]   STRINGS ON ORBIFOLDS [J].
DIXON, L ;
HARVEY, JA ;
VAFA, C ;
WITTEN, E .
NUCLEAR PHYSICS B, 1985, 261 (04) :678-686