On positivity of certain systems of partial differential equations

被引:7
作者
Parmeggiani, Alberto [1 ]
机构
[1] Univ Bologna, Dept Math, I-40126 Bologna, Italy
关键词
Fefferman-Phong inequality; pseudodifferential operators;
D O I
10.1073/pnas.0609949104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We extend the Fefferman-Phong inequality to N x N systems of PDEs with symbol p(x, xi) = A(x)e(xi) + B(x, xi) + C(x) = p(x, xi)* >= -cl, (x, xi) is an element of R-n x R-n, where e is a positive homogeneous quadratic form, and B(x, xi) = Sigma(n)(l=1) B-l(x)xi(l). We thus generalize a result by L.-Y. Sung that was obtained for systems of ordinary differential equations. our proof exploits a Calderon-Zygmund decomposition of the phase-space Rn x Rn of the kind introduced by C. Fefferman and D. H. Phong for studying subelliptic differential operators and goes by induction on the size N of the system.
引用
收藏
页码:723 / 726
页数:4
相关论文
共 15 条
[1]  
BRUMMELHUIS R, 1992, CR ACAD SCI I-MATH, V315, P149
[2]  
Dimassi M., 1999, LONDON MATH SOC LECT, V268
[3]   POSITIVITY OF PSEUDODIFFERENTIAL OPERATORS [J].
FEFFERMAN, C ;
PHONG, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1978, 75 (10) :4673-4674
[4]  
Fefferman C., 1983, WADSWORTH MATH SER, VI, P590
[5]   Melin-Hormander inequality in a Wiener type pseudo-differential algebra [J].
Hérau, F .
ARKIV FOR MATEMATIK, 2001, 39 (02) :311-338
[6]   WEYL CALCULUS OF PSEUDODIFFERENTIAL OPERATORS [J].
HORMANDER, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1979, 32 (03) :359-443
[7]   CAUCHY-PROBLEM FOR DIFFERENTIAL-EQUATIONS WITH DOUBLE CHARACTERISTICS [J].
HORMANDER, L .
JOURNAL D ANALYSE MATHEMATIQUE, 1977, 32 :118-196
[8]  
Hormander L., 1983, The Analysis of Linear Partial Differential Operators I
[9]  
LERNER N, 2005, FEFFERMANPHONG INEQU
[10]  
MUGHETTI M, 2007, IN PRESS COMM PARTIA