Characterization of an organic-solvent-tolerant Brevibacillus agri strain 13 able to stabilize solvent/water emulsion

被引:25
作者
Kongpol, Ajiraporn [5 ]
Pongtharangkul, Thunyarat [2 ]
Kato, Junichi [3 ]
Honda, Kohsuke [4 ]
Ohtake, Hisao [4 ]
Vangnai, Alisa S. [1 ,6 ]
机构
[1] Chulalongkorn Univ, Fac Sci, Dept Biochem, Bangkok 10330, Thailand
[2] Mahidol Univ, Dept Biotechnol, Bangkok 10700, Thailand
[3] Hiroshima Univ, Grad Sch Adv Sci Matter, Dept Mol Biotechnol, Hiroshima, Japan
[4] Osaka Univ, Dept Biotechnol, Osaka, Japan
[5] Chulalongkorn Univ, Fac Sci, Grad Program Biotechnol, Bangkok 10330, Thailand
[6] Chulalongkorn Univ, NCE EHWM, Bangkok 10330, Thailand
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
Brevibacillus; organic-solvent-tolerant bacterium; emulsion stabilization; bacterial cell surface characteristic; CELL-SURFACE HYDROPHOBICITY; CONTACT-ANGLE HYSTERESIS; MICROBIAL ADHESION; BACTERIA; BIOCATALYSIS; HYDROCARBONS;
D O I
10.1111/j.1574-6968.2009.01684.x
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Brevibacillus agri strain 13 was isolated and characterized as a Gram-positive organic-solvent-tolerant bacterium able to grow at 45 degrees C. It can tolerate high concentrations (5% and 20%, v/v) of various organic solvents with a broad range of log P-ow when the organic solvent was provided as a nonaqueous layer. Although it can tolerate a number of aromatic solvents, it cannot utilize them as a sole carbon source. The surface characteristics of cells exposed to organic solvent were investigated using the bacterial adhesion to hydrocarbon test, a contact angle measurement, zeta potential determination, and fluorescence microscopy analysis and compared with that of nonexposed cells. The results showed that although it has a hydrophilic cell surface, it has a unique indigenous cell surface characteristic in which the cells can stabilize solvent-in-water emulsion by adhering to the solvent-water interface of the solvent droplets. The tolerance and predilection of B. agri strain 13 toward organic solvents may suggest its potential application as a whole-cell biocatalyst for the biotransformation process of water-immiscible substrate(s).
引用
收藏
页码:225 / 233
页数:9
相关论文
共 32 条
[1]   Two different mechanisms for adhesion of Gram-negative bacterium, Pseudomonas fluorescens LP6a, to an oil-water interface [J].
Abbasnezhad, Hassan ;
Gray, Murray R. ;
Foght, Julia M. .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2008, 62 (01) :36-41
[2]   Influence of electrical properties on the evaluation of the surface hydrophobicity of Bacillus subtilis [J].
Ahimou, F ;
Paquot, M ;
Jacques, P ;
Thonart, P ;
Rouxhet, PG .
JOURNAL OF MICROBIOLOGICAL METHODS, 2001, 45 (02) :119-126
[3]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[4]  
[Anonymous], 2012, Molecular Cloning: A Laboratory Manual
[5]   Evaluation of adherence, hydrophobicity, aggregation, and biofilm development of Flavobacterium johnsoniae-like isolates [J].
Basson, A. ;
Flemming, L. A. ;
Chenia, H. Y. .
MICROBIAL ECOLOGY, 2008, 55 (01) :1-14
[6]   SOLVENT SELECTION-STRATEGIES FOR EXTRACTIVE BIOCATALYSIS [J].
BRUCE, LJ ;
DAUGULIS, AJ .
BIOTECHNOLOGY PROGRESS, 1991, 7 (02) :116-124
[7]   IMPLICATIONS OF MICROBIAL ADHESION TO HYDROCARBONS FOR EVALUATING CELL-SURFACE HYDROPHOBICITY .1. ZETA-POTENTIALS OF HYDROCARBON DROPLETS [J].
BUSSCHER, HJ ;
VANDEBELTGRITTER, B ;
VANDERMEI, HC .
COLLOIDS AND SURFACES B-BIOINTERFACES, 1995, 5 (3-4) :111-116
[8]   Effects of Organic Solvents on Immobilized Lipase in Pectin Microspheres [J].
Costas, L. ;
Bosio, V. E. ;
Pandey, A. ;
Castro, G. R. .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2008, 151 (2-3) :578-586
[9]   Stabilization of oil-water emulsions by hydrophobic bacteria [J].
Dorobantu, LS ;
Yeung, AKC ;
Foght, JM ;
Gray, MR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2004, 70 (10) :6333-6336
[10]   A Comparison of Various Methods to Predict Bacterial Predilection for Organic Solvents Used as Reaction Media [J].
Hamada, Takahiro ;
Sameshima, Yuka ;
Honda, Kohsuke ;
Omasa, Takeshi ;
Kato, Junichi ;
Ohtake, Hisao .
JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2008, 106 (04) :357-362