Exceptional families of elements, feasibility and complementarity

被引:12
作者
Isac, G [1 ]
机构
[1] Royal Mil Coll Canada, Dept Math & Comp Sci, STN Forces, Kingston, ON, Canada
关键词
complementarity problems; feasibility; exceptional family of elements; zero-epi mappings;
D O I
10.1023/A:1004637625355
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Feasibility is an important property for a complementarity problem. A complementarity problem is solvable if it is feasible and some supplementary assumptions are satisfied. In this paper, we introduce the notion of (alpha, beta)-exceptional family of elements for a continuous function and we apply this notion to the study of feasibility of nonlinear complementarity problems.
引用
收藏
页码:577 / 588
页数:12
相关论文
共 20 条
[1]  
BERSHCHANSKII YM, 1983, AUTOMAT REM CONTR+, V44, P687
[2]  
Bulavsky VA, 1998, NONCON OPTIM ITS APP, V20, P333
[3]  
CARBONE A, 1998, NONLINEAR STUDIES, V5, P129
[4]  
Cottle R, 1992, The Linear Complementarity Problem
[5]   Engineering and economic applications of complementarity problems [J].
Ferris, MC ;
Pang, JS .
SIAM REVIEW, 1997, 39 (04) :669-713
[6]  
Furi M., 1980, ANN MAT PUR APPL, V124, P321
[7]   Exceptional families, topological degree and complementarity problems [J].
Isac, G ;
Bulavski, V ;
Kalashnikov, V .
JOURNAL OF GLOBAL OPTIMIZATION, 1997, 10 (02) :207-225
[8]   MULTIPLE-OBJECTIVE APPROXIMATION OF FEASIBLE BUT UNSOLVABLE LINEAR COMPLEMENTARITY-PROBLEMS [J].
ISAC, G ;
KOSTREVA, MM ;
WIECEK, MM .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1995, 86 (02) :389-405
[9]   Functions without exceptional family of elements and complementarity problems [J].
Isac, G ;
Obuchowska, WT .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 99 (01) :147-163
[10]  
ISAC G, 1992, LECT NOTES MATH, V1528, pR3