On the integral Tate conjecture for finite fields and representation theory

被引:8
作者
Antieau, Benjamin [1 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, 851 S Morgan St, Chicago, IL 60607 USA
来源
ALGEBRAIC GEOMETRY | 2016年 / 3卷 / 02期
基金
美国国家科学基金会;
关键词
Tate conjecture; cycle class maps; classifying spaces of algebraic groups; Chowrings; CHOW RING; COHOMOLOGY;
D O I
10.14231/AG-2016-007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe a new source of counterexamples to the so-called integral Hodge and integral Tate conjectures. As in the other known counterexamples to the integral Tate conjecture over finite fields, ours are approximations of the classifying space of some group BG. Unlike the other examples, we find groups of type A(n), our proof relies heavily on representation theory, and Milnor's operations vanish on the classes we construct.
引用
收藏
页码:138 / 149
页数:12
相关论文
共 18 条
[1]  
[Anonymous], 2022, Sage Mathematics Software (Version 9.4)
[2]   The topological period-index problem over 6-complexes [J].
Antieau, Benjamin ;
Williams, Ben .
JOURNAL OF TOPOLOGY, 2014, 7 (03) :617-640
[3]  
Atiyah M., 1962, Topology, V1, P25, DOI 10.1016/0040-9383(62)90094-0
[4]  
Atiyah MF, 1969, J. Differential Geometry, V3, P1
[5]  
Bousfield A.K., 1972, Lecture Notes in Math., V304
[6]  
Colliot-Thelene J.-L., 2010, CLAY MATH P, V9, P83
[7]   The arason invariant and mod 2 algebraic cycles [J].
Esnault, H ;
Kahn, B ;
Levine, M ;
Viehweg, E .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 11 (01) :73-118
[8]  
Fulton W., 1997, Young tableaux , London Mathematical Society Student Texts, V35
[9]  
GORESKY M, 1988, ERGEB MATH GRENZGEB, V14