KINETIC MODELS FOR POLYMERS WITH INERTIAL EFFECTS

被引:24
作者
Degond, Pierre [1 ,2 ]
Liu, Hailiang [3 ]
机构
[1] Univ Toulouse, UPS, INSA, UT1,UTM,Inst Math Toulouse, F-31062 Toulouse, France
[2] CNRS, Inst Math Toulouse, UMR 5219, F-31062 Toulouse, France
[3] Iowa State Univ, Dept Math, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
Polymers; kinetic description; Brownian forces; Rod like models; Dumbbell model; FENE-DUMBBELL MODEL; NONLINEAR FOKKER-PLANCK; NAVIER-STOKES SYSTEMS; MICRO-MACRO MODEL; SMOLUCHOWSKI-EQUATION; WELL-POSEDNESS; GLOBAL EXISTENCE; NEAR-EQUILIBRIUM; WEAK SOLUTIONS; FLUIDS;
D O I
10.3934/nhm.2009.4.625
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Novel kinetic models for both Dumbbell-like and rigid-rod like polymers are derived, based on the probability distribution function f(t, x, n, (n) over dot) for a polymer molecule positioned at x to be oriented along direction n while embedded in a. n environment created by inertial effects. It is shown that the probability distribution function of the extended model, when converging, will lead to well accepted kinetic models when inertial effects are ignored such as the Doi models for rod like polymers, and the Finitely Extensible Non-linear Elastic (FENE) models for Dumbbell like polymers.
引用
收藏
页码:625 / 647
页数:23
相关论文
共 42 条
[1]  
[Anonymous], 1996, STOCHASTIC PROCESSES
[2]  
Bird R.B., 1987, DYNAMICS POLYM FLUID, V2
[3]   Global well-posedness for a Smoluchowski equation coupled with Navier-Stokes equations in 2D [J].
Constantin, P. ;
Masmoudi, Nader .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 278 (01) :179-191
[4]   Regularity of coupled two-dimensional nonlinear Fokker-Planck and Navier-Stokes systems [J].
Constantin, P. ;
Fefferman, C. ;
Titi, E. S. ;
Zarnescu, A. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (03) :789-811
[5]  
Constantin P, 2005, COMMUN MATH SCI, V3, P531
[6]   Dissipativity and Gevrey regularity of a Smoluchowski equation [J].
Constantin, P ;
Titi, ES ;
Vukadinovic, J .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2005, 54 (04) :949-969
[7]   Note on the number of steady states for a two-dimensional Smoluchowski equation [J].
Constantin, P ;
Vukadinovic, J .
NONLINEARITY, 2005, 18 (01) :441-443
[8]   Asymptotic states of a Smoluchowski equation [J].
Constantin, P ;
Kevrekidis, IG ;
Titi, ES .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2004, 174 (03) :365-384
[9]  
Constantin P, 2004, DISCRETE CONT DYN-A, V11, P101
[10]  
de Gennes P. G., 1993, The Physics of Liquid Crystals, V2nd ed