A Characterization of Secant Varieties of Severi Varieties Among Cubic Hypersurfaces

被引:0
|
作者
Fu, Baohua [1 ,2 ,3 ]
Jeong, Yewon [2 ]
Zak, Fyodor L. [4 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Hua Loo Keng Lab Math, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Morningside Ctr Math, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[4] Russian Acad Sci, Cent Econ Math Inst, Nakhimovskii Av 47, Moscow 117418, Russia
基金
中国国家自然科学基金;
关键词
D O I
10.1093/imrn/rnaa223
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that an irreducible cubic hypersurface with nonzero Hessian and smooth singular locus is the secant variety of a Severi variety if and only if its Lie algebra of infinitesimal linear automorphisms admits a nonzero prolongation.
引用
收藏
页码:2763 / 2782
页数:20
相关论文
共 50 条
  • [1] Secant varieties of the varieties of reducible hypersurfaces in Pn
    Catalisano, M. V.
    Geramita, A. V.
    Gimigliano, A.
    Harbourne, B.
    Migliore, J.
    Nagel, U.
    Shin, Y. S.
    JOURNAL OF ALGEBRA, 2019, 528 : 381 - 438
  • [2] On cubic torsors, biextensions and Severi–Brauer varieties over Abelian varieties
    Nathan Grieve
    São Paulo Journal of Mathematical Sciences, 2021, 15 : 1045 - 1074
  • [3] CONSTRUCTIONS OF BRAUER-SEVERI VARIETIES AND NORM HYPERSURFACES
    KANG, MC
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1990, 42 (02): : 230 - 238
  • [4] On cubic torsors, biextensions and Severi-Brauer varieties over Abelian varieties
    Grieve, Nathan
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2021, 15 (02): : 1045 - 1074
  • [5] Severi varieties and their varieties of reductions
    Iliev, A
    Manivel, L
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2005, 585 : 93 - 139
  • [6] Severi varieties
    Pierre-Emmanuel Chaput
    Mathematische Zeitschrift, 2002, 240 : 451 - 459
  • [7] Severi varieties
    Chaput, PE
    MATHEMATISCHE ZEITSCHRIFT, 2002, 240 (02) : 451 - 459
  • [8] SEVERI VARIETIES
    ZAK, FL
    MATHEMATICS OF THE USSR-SBORNIK, 1985, 126 (1-2): : 113 - 127
  • [9] Adjoint varieties and their secant varieties
    Kaji, H
    Ohno, M
    Yasukura, O
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1999, 10 (01): : 45 - 57
  • [10] Secant varieties of Grassmann varieties
    Catalisano, MV
    Geramita, AV
    Gimigliano, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (03) : 633 - 642