Bottom-Up Coarse-Grained Modeling of DNA

被引:33
作者
Sun, Tiedong [1 ]
Minhas, Vishal [1 ]
Korolev, Nikolay [1 ]
Mirzoev, Alexander [1 ]
Lyubartsev, Alexander P. [2 ]
Nordenskiold, Lars [1 ]
机构
[1] Nanyang Technol Univ, Sch Biol Sci, Singapore, Singapore
[2] Stockholm Univ, Dept Mat & Environm Chem, Stockholm, Sweden
基金
瑞典研究理事会;
关键词
DNA condensation; coarse-grained model; molecular renormalization group; inverse Monte Carlo; multi-scale coarse-graining; force matching; relative entropy; persistence length; MONTE-CARLO-SIMULATION; PERSISTENCE LENGTHS; LIGHT-SCATTERING; FORCE-FIELDS; POTENTIALS; DYNAMICS; NACL; CONFORMATIONS; DEPENDENCE; PHYSICS;
D O I
10.3389/fmolb.2021.645527
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent advances in methodology enable effective coarse-grained modeling of deoxyribonucleic acid (DNA) based on underlying atomistic force field simulations. The so-called bottom-up coarse-graining practice separates fast and slow dynamic processes in molecular systems by averaging out fast degrees of freedom represented by the underlying fine-grained model. The resulting effective potential of interaction includes the contribution from fast degrees of freedom effectively in the form of potential of mean force. The pair-wise additive potential is usually adopted to construct the coarse-grained Hamiltonian for its efficiency in a computer simulation. In this review, we present a few well-developed bottom-up coarse-graining methods, discussing their application in modeling DNA properties such as DNA flexibility (persistence length), conformation, "melting," and DNA condensation.
引用
收藏
页数:17
相关论文
共 50 条
[41]   A novel coarse-grained modeling and simulation for the microstructure evolution of ferrofluids [J].
Zhao, Penghui ;
Du, Tianxiang ;
Zeng, Yaoxiang ;
Pan, Zhongwen ;
Ma, Ning ;
Zhao, Jiamin ;
Dong, Xufeng .
SMART MATERIALS AND STRUCTURES, 2023, 32 (09)
[42]   Gaussian mixture model for coarse-grained modeling from XFEL [J].
Nagai, Tetsuro ;
Mochizuki, Yuki ;
Joti, Yasumasa ;
Tama, Florence ;
Miyashita, Osamu .
OPTICS EXPRESS, 2018, 26 (20) :26734-26749
[43]   SURPASS Low-Resolution Coarse-Grained Protein Modeling [J].
Dawid, Aleksandra E. ;
Gront, Dominik ;
Kolinski, Andrzej .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (11) :5766-5779
[44]   Bringing Quantum Mechanics to Coarse-Grained Soft Materials Modeling [J].
Wang, Chun-, I ;
Jackson, Nicholas E. .
CHEMISTRY OF MATERIALS, 2023, 35 (04) :1470-1486
[45]   Coarse-grained modeling of the interface between water and heterogeneous surfaces [J].
Willard, Adam P. ;
Chandler, David .
FARADAY DISCUSSIONS, 2009, 141 :209-220
[46]   Coarse-grained models of water [J].
Darre, Leonardo ;
Machado, Matias R. ;
Pantano, Sergio .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2012, 2 (06) :921-930
[47]   OpenMSCG: A Software Tool for Bottom-Up Coarse-Graining [J].
Peng, Yuxing ;
Pak, Alexander J. ;
Durumeric, Aleksander E. P. ;
Sahrmann, Patrick G. ;
Mani, Sriramvignesh ;
Jin, Jaehyeok ;
Loose, Timothy D. ;
Beiter, Jeriann ;
Voth, Gregory A. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2023, 127 (40) :8537-8550
[48]   Systematic derivation of hybrid coarse-grained models [J].
Di Pasquale, Nicodemo ;
Hudson, Thomas ;
Icardi, Matteo .
PHYSICAL REVIEW E, 2019, 99 (01)
[49]   Simplified Models for Coarse-Grained Hemodynamics Simulations [J].
Harting, J. ;
Janoschek, F. ;
Kaoui, B. ;
Krueger, T. ;
Toschi, F. .
HIGH PERFORMANCE COMPUTING IN SCIENCE AND ENGINEERING'13: TRANSACTIONS OF THE HIGH PERFORMANCE COMPUTING CENTER, STUTTGART (HLRS) 2013, 2013, :53-64
[50]   Globular bundles and entangled network of proteins (CorA) by a coarse-grained Monte Carlo simulation [J].
Rangubpit, Warin ;
Kitjaruwankul, Sunan ;
Boonamnaj, Panisak ;
Sompornpisut, Pornthep ;
Pandey, R. B. .
AIMS BIOPHYSICS, 2019, 6 (02) :68-82