A Wafer-Level Diamond Bonding Process to Improve Power Handling Capability of Submillimeter-Wave Schottky Diode Frequency Multipliers

被引:43
作者
Lee, C. [1 ]
Ward, J. [1 ]
Lin, R. [1 ]
Schlecht, E. [1 ]
Chattopadhyay, G. [1 ]
Gill, J. [1 ]
Thomas, B. [1 ]
Maestrini, A. [2 ]
Mehdi, I. [1 ]
Siegel, P. [1 ,3 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[2] Univ Paris 06, F-75252 Paris 05, France
[3] CALTECH, Dept Biol, Pasadena, CA 91125 USA
来源
2009 IEEE/MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM, VOLS 1-3 | 2009年
关键词
Submillimeter wave; GaAs Schottky diode; diamond; heat-spreader; THz; source; frequency multiplier;
D O I
10.1109/MWSYM.2009.5165857
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We have developed a robust wafer-level substrate bonding process that has allowed us to bond CVD diamond to GaAs membrane-based submillimeter-wave Schottky diode frequency multipliers. The high thermal conductivity of CVD diamond allows the chip to dissipate heat more efficiently thus increasing the power handling capability of the chips. This process has resulted in single-chip multiplier devices working in the submillimeter-wave range that can handle hundreds of milliwatts; of input power. Output powers of 40 mW at 250 GHz and 27 mW at 300 GHz from a single chip have been demonstrated with this method. It is expected that by power combining these chips it is now possible to achieve a wideband 300 GHz signal with more than 100 mW of power. This represents a dramatic improvement in the current state of the art and allows one to begin realizing submillimeter-wave radar applications.
引用
收藏
页码:957 / +
页数:2
相关论文
共 7 条
[1]   Anisotropic dry etching of boron doped single crystal CVD diamond [J].
Enlund, J ;
Isberg, J ;
Karlsson, M ;
Nikolajeff, F ;
Olsson, J ;
Twitchen, DJ .
CARBON, 2005, 43 (09) :1839-1842
[2]   In-phase power-combined frequency triplers at 300 GHz [J].
Maestrini, Alain ;
Ward, John S. ;
Tripon-Canseliet, Charlotte ;
Gill, John J. ;
Lee, Choonsup ;
Javadi, Hamid ;
Attopadhyay, Goutam Ch. ;
Mehdi, Imran .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2008, 18 (03) :218-220
[3]  
Maiwald F., 2003, P 14 INT S SPAC TER, P488
[4]  
Martin S, 2001, IEEE MTT S INT MICR, P1641, DOI 10.1109/MWSYM.2001.967219
[5]  
Micovic M., 2006, GaN HFET for W- band Power Applications, P1
[6]  
SIEGEL PH, 2002, IEEE T MICROWAVE THE, V50
[7]  
Ward J., 2008, P 33 INT C INFR MILL P 33 INT C INFR MILL