CONTROLLABILITY OF LINEAR SYSTEMS ON SOLVABLE LIE GROUPS

被引:38
作者
Da Silva, Adriano [1 ]
机构
[1] Univ Estadual Campinas, Inst Matemat, BR-13081970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
controllability; linear systems; Lie groups;
D O I
10.1137/140998342
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Linear systems on Lie groups are a natural generalization of linear systems on Euclidian spaces. For such systems, this paper studies controllability by taking into consideration the eigenvalues of an associated derivation D. When the state space is a solvable connected Lie group, controllability of the system is guaranteed if the reachable set of the neutral element is open and the derivation D has only pure imaginary eigenvalues. For bounded systems on nilpotent Lie groups such conditions are also necessary.
引用
收藏
页码:372 / 390
页数:19
相关论文
共 16 条
[1]  
[Anonymous], 2013, Mathematical control theory: deterministic finite dimensional systems
[2]  
Ayala V, 2000, LECT NOTES CONTR INF, V258, P83
[3]  
Ayala V., 1999, LINEAR CONTROL SYSTE
[4]  
Ayala Víctor, 2013, Proyecciones (Antofagasta), V32, P61, DOI 10.4067/S0716-09172013000100005
[5]  
Cheeger J., 1975, Comparison Theorems in Riemannian Geometry
[6]  
Colonius F., 2000, The Dynamics of Control
[7]   OUTER INVARIANCE ENTROPY FOR LINEAR SYSTEMS ON LIE GROUPS [J].
Da Silva, Adriano J. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (06) :3917-3934
[8]   CONTROLLABILITY OF LINEAR SYSTEMS ON LIE GROUPS [J].
Jouan, P. .
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2011, 17 (04) :591-616
[9]  
Jouan Ph., 2014, J DYN CONTROL SYST
[10]   EQUIVALENCE OF CONTROL SYSTEMS WITH LINEAR SYSTEMS ON LIE GROUPS AND HOMOGENEOUS SPACES [J].
Jouan, Philippe .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2010, 16 (04) :956-973