In silico analysis of Mn transporters (NRAMP1) in various plant species

被引:35
作者
Vatansever, Recep [1 ]
Filiz, Ertugrul [2 ]
Ozyigit, Ibrahim Ilker [1 ]
机构
[1] Marmara Univ, Fac Sci & Arts, Dept Biol, TR-34722 Goztepe, Istanbul, Turkey
[2] Duzce Univ, Cilimli Vocat Sch, Dept Crop & Anim Prod, TR-81750 Cilimli, Duzce, Turkey
关键词
Transporter family; Motif signature; Interaction partner; Homology search; Conserved motif; 3D modelling; GENE FAMILY; IRON UPTAKE; DIFFERENTIAL REGULATION; STRUCTURE PREDICTION; MANGANESE UPTAKE; PHOTOSYSTEM-II; ROOT HAIRS; ARABIDOPSIS; MEMBERS; HOMEOSTASIS;
D O I
10.1007/s11033-016-3950-x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Manganese (Mn) is an essential micronutrient in plant life cycle. It may be involved in photosynthesis, carbohydrate and lipid biosynthesis, and oxidative stress protection. Mn deficiency inhibits the plant growth and development, and causes the various plant symptoms such as interveinal chlorosis and tissue necrosis. Despite its importance in plant life cycle, we still have limited knowledge about Mn transporters in many plant species. Therefore, this study aimed to identify and characterize high affinity Arabidopsis Mn root transporter NRAMP1 orthologs in 17 different plant species. Various in silico methods and digital gene expression data were used in identification and characterization of NRAMP1 homologs; physico-chemical properties of sequences were calculated, putative transmembrane domains (TMDs) and conserved motif signatures were determined, phylogenetic tree was constructed, 3D models and interactome map were generated, and gene expression data was analyzed. 49 NRAMP1 homologs were identified from proteome datasets of 17 plant species using AtNRAMP1 as query. Identified sequences were characterized with a NRAMP domain structure, 10-12 putative TMDs with cytosolic N- and C-terminuses, and 10-14 exons encoding a protein of 500-588 amino acids and 53.8-64.3 kDa molecular weight with basic characteristics. Consensus transport residues, GQSSTITGTYAGQY(/F) V(/I) MQGFLD(/E/N) between TMD-8 and 9 were identified in all sequences but putative N-linked glycosylation sites were not highly conserved. In phylogeny, NRAMP1 sequences demonstrated divergence in lower and higher plants as well as in monocots and dicots. Despite divergence of lower plant Physcomitrella patens in phylogeny, it showed similarity in superposed 3D models. Phylogenetic distribution of AtNRAMP1 and 6 homologs inferred a functional relationship to NRAMP6 sequences in Mn transport, while distribution of OsN-RAMP1 and 5 homologs implicated an involvement of NRAMP1 sequences in Mn transport or a cross-talk between in Fe-Mn homeostasis. Interactome analysis further confirmed this cross-talk between Mn and Fe pathways. Gene expression profile of AtNRAMP1 under Fe-, K-, P-and S-deficiencies, and cold, drought, heat and salt stresses revealed various proteins involving in transcription regulation, cofactor biosynthesis, diverse developmental roles, carbohydrate metabolism, oxidation-reduction reactions, cellular signaling and protein degradation pathways. Mn deficiency or toxicity could cause serious adverse effects in plants as well as in humans. To reduce these adversities mainly rely on understanding the molecular mechanisms underlying Mn uptake from the soil. However, we still have limited knowledge regarding the structural and functional roles of Mn transporters in many plant species. Therefore, identification and characterization of Mn root uptake transporter, NRAMP1 orthologs in various plant species will provide valuable theoretical knowledge to better understand Mn transporters as well as it may become an insight for future studies aiming to develop genetically engineered and biofortified plants.
引用
收藏
页码:151 / 163
页数:13
相关论文
共 58 条
  • [1] Plant bZIP Transcription Factors Responsive to Pathogens: A Review
    Alves, Murilo S.
    Dadalto, Silvana P.
    Goncalves, Amanda B.
    De Souza, Gilza B.
    Barros, Vanessa A.
    Fietto, Luciano G.
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2013, 14 (04) : 7815 - 7828
  • [2] MEME SUITE: tools for motif discovery and searching
    Bailey, Timothy L.
    Boden, Mikael
    Buske, Fabian A.
    Frith, Martin
    Grant, Charles E.
    Clementi, Luca
    Ren, Jingyuan
    Li, Wilfred W.
    Noble, William S.
    [J]. NUCLEIC ACIDS RESEARCH, 2009, 37 : W202 - W208
  • [3] Differential regulation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato
    Bereczky, Z
    Wang, HY
    Schubert, V
    Ganal, M
    Bauer, P
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (27) : 24697 - 24704
  • [4] Prediction of membrane-protein topology from first principles
    Bernsel, Andreas
    Viklund, Hakan
    Falk, Jenny
    Lindahl, Erik
    von Heijne, Gunnar
    Elofsson, Arne
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (20) : 7177 - 7181
  • [5] High-Affinity Manganese Uptake by the Metal Transporter NRAMP1 Is Essential for Arabidopsis Growth in Low Manganese Conditions
    Cailliatte, Remy
    Schikora, Adam
    Briat, Jean-Francois
    Mari, Stephane
    Curie, Catherine
    [J]. PLANT CELL, 2010, 22 (03) : 904 - 917
  • [6] NRAMP DEFINES A FAMILY OF MEMBRANE-PROTEINS
    CELLIER, M
    PRIVE, G
    BELOUCHI, A
    KWAN, T
    RODRIGUES, V
    CHIA, W
    GROS, P
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (22) : 10089 - 10093
  • [7] The MYB transcription factor superfamily of arabidopsis: Expression analysis and phylogenetic comparison with the rice MYB family
    Chen, YH
    Yang, XY
    He, K
    Liu, MH
    Li, JG
    Gao, ZF
    Lin, ZQ
    Zhang, YF
    Wang, XX
    Qiu, XM
    Shen, YP
    Zhang, L
    Deng, XH
    Luo, JC
    Deng, XW
    Chen, ZL
    Gu, HY
    Qu, LJ
    [J]. PLANT MOLECULAR BIOLOGY, 2006, 60 (01) : 107 - 124
  • [8] The zinc finger network of plants
    Ciftci-Yilmaz, S.
    Mittler, R.
    [J]. CELLULAR AND MOLECULAR LIFE SCIENCES, 2008, 65 (7-8) : 1150 - 1160
  • [9] Arabidopsis thalina Yellow Stripe1-Like4 and Yellow Stripe1-Like6 localize to internal cellular membranes and are involved in metal ion homeostasis
    Conte, S. S.
    Chu, H. H.
    Chan-Rodriguez, D.
    Punshon, T.
    Vasques, K. A.
    Salt, D. E.
    Walker, E. L.
    [J]. FRONTIERS IN PLANT SCIENCE, 2013, 4
  • [10] Involvement of NRAMP1 from Arabidopsis thaliana in iron transport
    Curie, C
    Alonso, JM
    Le Jean, M
    Ecker, JR
    Briat, JF
    [J]. BIOCHEMICAL JOURNAL, 2000, 347 (pt 3) : 749 - 755