Controllable synthesis of molybdenum-based electrocatalysts for a hydrogen evolution reaction

被引:114
|
作者
Guo, Junpo [1 ]
Wang, Jie [1 ]
Wu, Zexing [1 ]
Lei, Wen [1 ]
Zhu, Jing [1 ]
Xia, Kedong [1 ]
Wang, Deli [1 ]
机构
[1] Huazhong Univ Sci & Technol, Key Lab Mat Chem Energy Convers & Storage, Minist Educ, Hubei Key Lab Mat Chem & Serv Failure,Sch Chem &, Wuhan 430074, Peoples R China
基金
国家教育部博士点专项基金资助;
关键词
HIGHLY EFFICIENT ELECTROCATALYST; PHOSPHIDE NANOPARTICLES; MO2C NANOPARTICLES; CARBON CORROSION; SURFACE-AREA; GRAPHENE; NITROGEN; CO; NANOSHEETS; CATALYSTS;
D O I
10.1039/c6ta10758c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In order to explore low-cost, high efficiency, precious metal-free materials for electrochemical water splitting, three types of molybdenum-based compounds (MoO2, MoC and Mo2C) were synthesized by tuning the ratio of glucose and ammonium molybdate via a two-step procedure. TEM images reveal a uniform dispersion of the three molybdenum-based nanoparticles on the carbon support, and in particular, MoC and Mo2C exhibit ultra-small particle sizes which are lower than 3 nm. When used as catalysts for the HER in both acid and basic media, Mo2C exhibits the best catalytic activity with a small overpotential of 135 mV in acid media and 96 mV in alkaline media at a current density of 10 mA cm(-2), which is about 105 mV and 30 mV higher than that with Pt/C, respectively. The enhanced catalytic activity of Mo2C could originate from the excellent crystal structure, the high electronic conductivity of the carbon support with a high degree of graphitization and the ultra-small particle size, which provides a large surface area and active sites.
引用
收藏
页码:4879 / 4885
页数:7
相关论文
共 50 条
  • [41] Metal-free borocarbonitrides as electrocatalysts for the hydrogen evolution reaction under alkaline media
    Cencerrero, J.
    Sanchez, P.
    de Lucas-Consuegra, A.
    de la Osa, A. R.
    Romero, A.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2025, 977
  • [42] Optimizing the activity of hydrogen evolution reaction through controllable synthesis of single crystal or polycrystalline NiXPy
    Qiu, Zhuo
    Dai, Yiqi
    Yang, Fangyuan
    Zhang, Runzhi
    Guo, Wei
    Xiao, Xin
    Tong, Yuqiao
    Yao, Lihua
    Yang, Zhi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 976
  • [43] Efficient Mechanochemical Preparation of Graphene-Like Molybdenum Disulfide and Graphene-Based Composite Electrocatalysts for Hydrogen Evolution Reaction
    Posudievsky, Oleg Yu
    Kozarenko, Olga A.
    Dyadyun, Vyacheslav S.
    Koshechko, Vyacheslav G.
    Pokhodenko, Vitaly D.
    ELECTROCATALYSIS, 2019, 10 (05) : 477 - 488
  • [44] Molybdenum carbide nanoparticles supported on nitrogen-doped carbon as efficient electrocatalysts for hydrogen evolution reaction
    Tao, Yuanhua
    Wang, Xueguang
    Yue, Shengnan
    Li, Fei
    Huang, Haigen
    Lu, Xionggang
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 842 : 89 - 97
  • [45] Synthesis of MoS2/CoSe2-x hybrids as electrocatalysts for hydrogen evolution reaction
    Wu, Huimin
    Shi, Lan
    Feng, Chuanqi
    Ding, Yu
    IONICS, 2022, 28 (03) : 1337 - 1345
  • [46] In-situ synthesis of coupled molybdenum carbide and molybdenum nitride as electrocatalyst for hydrogen evolution reaction
    Wang, Weiwen
    Liu, Can
    Zhou, Dali
    Yang, Lei
    Zhou, Jiabei
    Yang, Dongrui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 792 : 230 - 239
  • [47] Synthesis of Co2FeAl alloys as highly efficient electrocatalysts for alkaline hydrogen evolution reaction
    Zhang, Jiawei
    Huang, Jingtao
    Wang, Ka
    Gao, Yuan
    Lou, Shuai
    Zhou, Fei
    Yan, Shancheng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (27) : 13399 - 13408
  • [48] Influence of Carbon on Molybdenum Carbide Catalysts for the Hydrogen Evolution Reaction
    Tang, Chaoyun
    Wu, Zhuangzhi
    Wang, Dezhi
    CHEMCATCHEM, 2016, 8 (11) : 1961 - 1967
  • [49] Graphene Loading Molybdenum Carbide/Oxide Hybrids as Advanced Electrocatalysts for hydrogen evolution reaction
    Li, Xinxin
    Ci, Suqin
    Jia, Jingchun
    Wen, Zhenhai
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (46) : 21246 - 21250
  • [50] Molybdenum Carbide Prepared by a Salt Sealing Approach as an Electrocatalyst for Enhanced Hydrogen Evolution Reaction
    Lin Zhou
    Shen Linfan
    Qu Ximing
    Zhang Junming
    Jiang Yanxia
    Sun Shigang
    ACTA PHYSICO-CHIMICA SINICA, 2019, 35 (05) : 523 - 530