Controllable synthesis of molybdenum-based electrocatalysts for a hydrogen evolution reaction

被引:114
|
作者
Guo, Junpo [1 ]
Wang, Jie [1 ]
Wu, Zexing [1 ]
Lei, Wen [1 ]
Zhu, Jing [1 ]
Xia, Kedong [1 ]
Wang, Deli [1 ]
机构
[1] Huazhong Univ Sci & Technol, Key Lab Mat Chem Energy Convers & Storage, Minist Educ, Hubei Key Lab Mat Chem & Serv Failure,Sch Chem &, Wuhan 430074, Peoples R China
基金
国家教育部博士点专项基金资助;
关键词
HIGHLY EFFICIENT ELECTROCATALYST; PHOSPHIDE NANOPARTICLES; MO2C NANOPARTICLES; CARBON CORROSION; SURFACE-AREA; GRAPHENE; NITROGEN; CO; NANOSHEETS; CATALYSTS;
D O I
10.1039/c6ta10758c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In order to explore low-cost, high efficiency, precious metal-free materials for electrochemical water splitting, three types of molybdenum-based compounds (MoO2, MoC and Mo2C) were synthesized by tuning the ratio of glucose and ammonium molybdate via a two-step procedure. TEM images reveal a uniform dispersion of the three molybdenum-based nanoparticles on the carbon support, and in particular, MoC and Mo2C exhibit ultra-small particle sizes which are lower than 3 nm. When used as catalysts for the HER in both acid and basic media, Mo2C exhibits the best catalytic activity with a small overpotential of 135 mV in acid media and 96 mV in alkaline media at a current density of 10 mA cm(-2), which is about 105 mV and 30 mV higher than that with Pt/C, respectively. The enhanced catalytic activity of Mo2C could originate from the excellent crystal structure, the high electronic conductivity of the carbon support with a high degree of graphitization and the ultra-small particle size, which provides a large surface area and active sites.
引用
收藏
页码:4879 / 4885
页数:7
相关论文
共 50 条
  • [1] Molybdenum-based electrocatalysts with nanostructured supports for hydrogen evolution reaction
    Feng, Yao
    Yu, Zhaoju
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2023, 20 (02) : 1129 - 1146
  • [2] A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction
    Hua, Wei
    Sun, Huan-Huan
    Xu, Fei
    Wang, Jian-Gan
    RARE METALS, 2020, 39 (04) : 335 - 351
  • [3] Molybdenum Carbide-Based Electrocatalysts for Hydrogen Evolution Reaction
    Miao, Mao
    Pan, Jing
    He, Ting
    Yan, Ya
    Xia, Bao Yu
    Wang, Xin
    CHEMISTRY-A EUROPEAN JOURNAL, 2017, 23 (46) : 10947 - +
  • [4] Molybdenum-Based Carbon Hybrid Materials to Enhance the Hydrogen Evolution Reaction
    Bae, Seo-Yoon
    Jeon, In-Yup
    Mahmood, Javeed
    Baek, Jong-Beom
    CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (69) : 18158 - 18179
  • [5] Multiple Phases of Molybdenum Carbide as Electrocatalysts for the Hydrogen Evolution Reaction
    Wan, Cheng
    Regmi, Yagya N.
    Leonard, Brian M.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (25) : 6407 - 6410
  • [6] The Holy Grail in Platinum-Free Electrocatalytic Hydrogen Evolution: Molybdenum-Based Catalysts and Recent Advances
    Zhuan, Zechao
    Huan, Jiazhao
    Li, Yong
    Zhou, Liang
    Mai, Liqiang
    CHEMELECTROCHEM, 2019, 6 (14) : 3570 - 3589
  • [7] Carbon-based electrocatalysts for hydrogen evolution reaction
    Ahmed, Khalid
    Hameed, Summaiya
    Patchigolla, Kumar
    Dawood, Nashwan
    Ghouri, Zafar Khan
    ENERGY CONVERSION AND MANAGEMENT-X, 2025, 26
  • [8] Molybdenum-Tungsten carbides based electrocatalysts for hydrogen evolution reaction
    Mabuea, Busisiwe Petunia
    Erasmus, Elizabeth
    Swart, Hendrik Christoffel
    INTERNATIONAL JOURNAL OF SUSTAINABLE ENERGY, 2023, 42 (01) : 91 - 102
  • [9] Catalytic Hydrogen Evolution by Molybdenum-Based Ternary Metal Sulfide Nanoparticles
    Aslan, Emre
    Sarilmaz, Adem
    Ozel, Faruk
    Patir, Imren Hatay
    Girault, Hubert H.
    ACS APPLIED NANO MATERIALS, 2019, 2 (11) : 7204 - 7213
  • [10] Coupling interactions enhancing molybdenum-based electrocatalysts for high-efficiency hydrogen evolution at wide pH
    Huang, Jieming
    Liu, Yuanwu
    Wang, Lirong
    Hou, Zhipeng
    Zhang, Zhang
    Zhang, Xiaoming
    Liu, Junming
    CHEMICAL ENGINEERING JOURNAL, 2023, 469