Ice shelf thickness over Larsen C, Antarctica, derived from satellite altimetry

被引:24
|
作者
Griggs, J. A. [1 ]
Bamber, J. L. [1 ]
机构
[1] Univ Bristol, Sch Geog Sci, Bristol Glaciol Ctr, Bristol BS8 1SS, Avon, England
关键词
MASS-BALANCE; RADAR INTERFEROMETRY; WEST ANTARCTICA; CLIMATE; SHEETS; CONTINENT; GREENLAND; ACCURACY; COLLAPSE; GLACIER;
D O I
10.1029/2009GL039527
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Satellite radar altimetry can be used to infer the thickness of floating ice shelves around Antarctica under the assumption of hydrostatic equilibrium. Ice shelf thickness is an essential parameter in mass budget calculations and is one of the more poorly characterised. Using data from the ERS-1 radar altimeter recorded in 1994-5, we calculate the thickness of Larsen C ice shelf on the Antarctic Peninsula. The surface elevation was determined to an accuracy of -2.3 +/- 4.35 m as compared to elevations from the laser altimeter onboard ICESat. Using a model for firn depth and density, we created a 1 km grid of ice shelf thickness for Larsen C. The accuracy of the ice thickness retrieval was determined from independent airborne radio echo sounding data. The results indicated a bias of -0.22 m and random error of 36.7 m, which is equivalent to 12.7% of the mean thickness for this ice shelf. Citation: Griggs, J. A., and J. L. Bamber (2009), Ice shelf thickness over Larsen C, Antarctica, derived from satellite altimetry, Geophys. Res. Lett., 36, L19501, doi: 10.1029/2009GL039527.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Present stability of the Larsen C ice shelf, Antarctic Peninsula
    Jansen, D.
    Kulessa, B.
    Sammonds, P. R.
    Luckman, A.
    King, E. C.
    Glasser, N. F.
    JOURNAL OF GLACIOLOGY, 2010, 56 (198) : 593 - 600
  • [32] Clay Mineralogical Characteristics of Sediments Deposited during the Late Quaternary in the Larsen Ice Shelf B Embayment, Antarctica
    Jung, Jaewoo
    Yoo, Kyu-Cheul
    Lee, Kee-Hwan
    Park, Young Kyu
    Lee, Jae Il
    Kim, Jinwook
    MINERALS, 2019, 9 (03):
  • [33] In-situ aircraft observations of ice concentrations within clouds over the Antarctic Peninsula and Larsen Ice Shelf
    Grosvenor, D. P.
    Choularton, T. W.
    Lachlan-Cope, T.
    Gallagher, M. W.
    Crosier, J.
    Bower, K. N.
    Ladkin, R. S.
    Dorsey, J. R.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (23) : 11275 - 11294
  • [34] Ice Sheet Elevation Change in West Antarctica From Ka-Band Satellite Radar Altimetry
    Otosaka, Ines
    Shepherd, Andrew
    McMillan, Malcolm
    GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (22) : 13135 - 13143
  • [35] ANALYSIS OF FLOW VELOCITY AND SURFACE STRUCTURE OVER NORTHERN LARSEN ICE SHELF USING TIME SERIES SATELLITE IMAGES
    Liu, Hongxing
    Wang, Shujie
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 4145 - 4148
  • [36] COMMENTARY: Impacts of the Larsen-C Ice Shelf calving event
    Hogg, Anna E.
    Gudmundsson, G. Hilmar
    NATURE CLIMATE CHANGE, 2017, 7 (08) : 540 - 542
  • [37] Surface structure and stability of the Larsen C ice shelf, Antarctic Peninsula
    Glasser, N. F.
    Kulessa, B.
    Luckman, A.
    Jansen, D.
    King, E. C.
    Sammonds, P. R.
    Scambos, T. A.
    Jezek, K. C.
    JOURNAL OF GLACIOLOGY, 2009, 55 (191) : 400 - 410
  • [38] Acceleration and spatial rheology of Larsen C Ice Shelf, Antarctic Peninsula
    Khazendar, A.
    Rignot, E.
    Larour, E.
    GEOPHYSICAL RESEARCH LETTERS, 2011, 38
  • [39] Changes in a Giant Iceberg Created from the Collapse of the Larsen C Ice Shelf, Antarctic Peninsula, Derived from Sentinel-1 and CryoSat-2 Data
    Han, Hyangsun
    Lee, Sungjae
    Kim, Jae-In
    Kim, Seung Hee
    Kim, Hyun-cheol
    REMOTE SENSING, 2019, 11 (04)
  • [40] Antarctic Peninsula Regional Circulation and Its Impact on the Surface Melt of Larsen C Ice Shelf
    Zhang, Chongran
    Zhang, Jing
    Wu, Qigang
    JOURNAL OF CLIMATE, 2021, 34 (17) : 7297 - 7309