Ice shelf thickness over Larsen C, Antarctica, derived from satellite altimetry

被引:24
|
作者
Griggs, J. A. [1 ]
Bamber, J. L. [1 ]
机构
[1] Univ Bristol, Sch Geog Sci, Bristol Glaciol Ctr, Bristol BS8 1SS, Avon, England
关键词
MASS-BALANCE; RADAR INTERFEROMETRY; WEST ANTARCTICA; CLIMATE; SHEETS; CONTINENT; GREENLAND; ACCURACY; COLLAPSE; GLACIER;
D O I
10.1029/2009GL039527
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Satellite radar altimetry can be used to infer the thickness of floating ice shelves around Antarctica under the assumption of hydrostatic equilibrium. Ice shelf thickness is an essential parameter in mass budget calculations and is one of the more poorly characterised. Using data from the ERS-1 radar altimeter recorded in 1994-5, we calculate the thickness of Larsen C ice shelf on the Antarctic Peninsula. The surface elevation was determined to an accuracy of -2.3 +/- 4.35 m as compared to elevations from the laser altimeter onboard ICESat. Using a model for firn depth and density, we created a 1 km grid of ice shelf thickness for Larsen C. The accuracy of the ice thickness retrieval was determined from independent airborne radio echo sounding data. The results indicated a bias of -0.22 m and random error of 36.7 m, which is equivalent to 12.7% of the mean thickness for this ice shelf. Citation: Griggs, J. A., and J. L. Bamber (2009), Ice shelf thickness over Larsen C, Antarctica, derived from satellite altimetry, Geophys. Res. Lett., 36, L19501, doi: 10.1029/2009GL039527.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Supraglacial lakes on the Larsen B ice shelf, Antarctica, and at Paakitsoq, West Greenland: a comparative study
    Banwell, Alison F.
    Caballero, Martamaria
    Arnold, Neil S.
    Glasser, Neil F.
    Mac Cathles, L.
    MacAyeal, Douglas R.
    ANNALS OF GLACIOLOGY, 2014, 55 (66) : 1 - 8
  • [22] Basal crevasses in Larsen C Ice Shelf and implications for their global abundance
    Luckman, A.
    Jansen, D.
    Kulessa, B.
    King, E. C.
    Sammonds, P.
    Benn, D. I.
    CRYOSPHERE, 2012, 6 (01): : 113 - 123
  • [23] Oceanic and atmospheric forcing of Larsen C Ice-Shelf thinning
    Holland, P. R.
    Brisbourne, A.
    Corr, H. F. J.
    McGrath, D.
    Purdon, K.
    Paden, J.
    Fricker, H. A.
    Paolo, F. S.
    Fleming, A. H.
    CRYOSPHERE, 2015, 9 (03): : 1005 - 1024
  • [24] The Impact of Fohn Winds on Surface Energy Balance During the 2010-2011 Melt Season Over Larsen C Ice Shelf, Antarctica
    King, J. C.
    Kirchgaessner, A.
    Bevan, S.
    Elvidge, A. D.
    Munneke, P. Kuipers
    Luckman, A.
    Orr, A.
    Renfrew, I. A.
    van den Broeke, M. R.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2017, 122 (22) : 12062 - 12076
  • [25] Mapping Basal Melt Under the Shackleton Ice Shelf, East Antarctica, From CryoSat-2 Radar Altimetry
    Liang, Qi
    Zhou, Chunxia
    Zheng, Lei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 5091 - 5099
  • [26] The 2020 Larsen C Ice Shelf surface melt is a 40-year record high
    Bevan, Suzanne
    Luckman, Adrian
    Hendon, Harry
    Wang, Guomin
    CRYOSPHERE, 2020, 14 (10): : 3551 - 3564
  • [27] Decline in Surface Melt Duration on Larsen C Ice Shelf Revealed by The Advanced Scatterometer (ASCAT)
    Bevan, Suzanne Louise
    Luckman, Adrian John
    Munneke, Peter Kuipers
    Hubbard, Bryn
    Kulessa, Bernd
    Ashmore, David William
    EARTH AND SPACE SCIENCE, 2018, 5 (10): : 578 - 591
  • [28] The effect of ocean tidal loading on satellite altimetry over Antarctica
    Yi, DH
    Minster, JB
    Bentley, CR
    ANTARCTIC SCIENCE, 2000, 12 (01) : 119 - 124
  • [29] Surface melt and ponding on Larsen C Ice Shelf and the impact of fohn winds
    Luckman, Adrian
    Elvidge, Andrew
    Jansen, Daniela
    Kulessa, Bernd
    Munneke, Peter Kuipers
    King, John
    Barrand, Nicholas E.
    ANTARCTIC SCIENCE, 2014, 26 (06) : 625 - 635
  • [30] Modelling the fate of surface melt on the Larsen C Ice Shelf
    Buzzard, Sammie
    Feltham, Daniel
    Flocco, Daniela
    CRYOSPHERE, 2018, 12 (11): : 3565 - 3575