The Application of Deep Learning Techniques for Solar Power Forecasting

被引:1
|
作者
Al-Jaafreh, Tamer Mushal [1 ]
Al-Odienat, Abdullah [2 ]
机构
[1] Mutah Univ, Kark, Jordan
[2] Mutah Univ, Elect Engn Dept, Kark, Jordan
关键词
Machine Learning; Deep Learning; LSTM; Solar irradiation; Forecasting process; Solar energy;
D O I
10.1109/ICICS55353.2022.9811182
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The future forecasting of the solar irradiation is becoming very essential. There are other elements (features) contribute to the forecasting process of the solar irradiation. These features are closely related to the amount of solar irradiation arriving from the sun. As the weather factors are related to each other in terms of influence, a wide range of features that are necessary to enter the i process are considered in this research. This paper investigate the effect of some atmospheric factors like Evapotranspiration and soil temperature using deep learning techniques, like LSTM algorithm. The results show that higher accuracy is achieved when new features related to solar irradiation were included in the forecasting process. To the best of authors' knowledge, these new features have not previously considered in literature. The RMSE value is 0.34 obtained with 16 features used in forecasting process.
引用
收藏
页码:214 / 219
页数:6
相关论文
共 50 条
  • [1] Solar Power Forecasting Using Deep Learning Techniques
    Elsaraiti, Meftah
    Merabet, Adel
    IEEE ACCESS, 2022, 10 : 31692 - 31698
  • [2] Deep Learning Application in Power System with a Case Study on Solar Irradiation Forecasting
    Muhammad, Aslam
    Lee, Jae Myoung
    Hong, Sug Won
    Lee, Seung Jae
    Lee, Eui Hyang
    2019 1ST INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION (ICAIIC 2019), 2019, : 275 - 279
  • [3] A RECENT INVASION WAVE OF DEEP LEARNING IN SOLAR POWER FORECASTING TECHNIQUES USING ANN
    Tuan-Anh Nguyen
    Manh-Hai Pham
    Trung-Kien Duong
    Minh-Phap Vu
    2021 IEEE INTERNATIONAL FUTURE ENERGY ELECTRONICS CONFERENCE (IFEEC), 2021,
  • [4] Solar Energy Forecasting Using Machine Learning and Deep Learning Techniques
    Rajasundrapandiyanleebanon, T.
    Kumaresan, K.
    Murugan, Sakthivel
    Subathra, M. S. P.
    Sivakumar, Mahima
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2023, 30 (05) : 3059 - 3079
  • [5] Solar Energy Forecasting Using Machine Learning and Deep Learning Techniques
    T. Rajasundrapandiyanleebanon
    K. Kumaresan
    Sakthivel Murugan
    M. S. P. Subathra
    Mahima Sivakumar
    Archives of Computational Methods in Engineering, 2023, 30 (5) : 3059 - 3079
  • [6] Application of deep learning for power system state forecasting
    Mukherjee, Debottam
    Chakraborty, Samrat
    Ghosh, Sandip
    Mishra, Rakesh Kumar
    INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2021, 31 (09):
  • [7] Application of Deep Reinforcement Learning to Major Solar Flare Forecasting
    Yi, Kangwoo
    Moon, Yong-Jae
    Jeong, Hyun-Jin
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2023, 265 (02):
  • [8] Forecasting rooftop photovoltaic solar power using machine learning techniques
    Singh, Upma
    Singh, Shekhar
    Gupta, Saket
    Alotaibi, Majed A.
    Malik, Hasmat
    ENERGY REPORTS, 2025, 13 : 3616 - 3630
  • [9] Machine Learning Based Solar Power Forecasting Techniques: Analysis and Comparison
    Ali, Muaiz
    Mohamed, H. Mohamed
    Alashwali, Abdulaziz
    Alfarraj, Motaz
    Khalid, Muhammad
    2022 IEEE PES 14TH ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE, APPEEC, 2022,
  • [10] Hybrid deep learning models for time series forecasting of solar power
    Diaa Salman
    Cem Direkoglu
    Mehmet Kusaf
    Murat Fahrioglu
    Neural Computing and Applications, 2024, 36 : 9095 - 9112