5S rRNA Promoter for Guide RNA Expression Enabled Highly Efficient CRISPR/Cas9 Genome Editing in Aspergillus niger

被引:110
作者
Zheng, Xiaomei [1 ,2 ]
Zheng, Ping [1 ,2 ]
Zhang, Kun [1 ,2 ,3 ]
Cairns, Timothy C. [4 ]
Meyer, Vera [4 ]
Sun, Jibin [1 ,2 ]
Ma, Yanhe [1 ]
机构
[1] Chinese Acad Sci, Tianjin Inst Ind Biotechnol, Tianjin 300308, Peoples R China
[2] Chinese Acad Sci, Key Lab Syst Microbial Biotechnol, Tianjin 300308, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Tech Univ Berlin, Inst Biotechnol, Dept Appl & Mol Microbiol, D-13355 Berlin, Germany
基金
中国国家自然科学基金;
关键词
SS rRNA; Aspergillus niger; CRISPR/Cas9; system; genome editing; SYSTEM; CAS9; TOOL;
D O I
10.1021/acssynbio.7b00456
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The CRISPR/Cas9 system is a revolutionary genome editing tool. However, in eukaryotes, search and optimization of a suitable promoter for guide RNA expression is a significant technical challenge. Here we used the industrially important fungus, Aspergillus niger, to demonstrate that the SS rRNA gene, which is both highly conserved and efficiently expressed in eukaryotes, can be used as a guide RNA promoter. The gene editing system was established with 100% rates of precision gene modifications among dozens of transformants using short (40-bp) homologous donor DNA. This system was also applicable for generation of designer chromosomes, as evidenced by deletion of a 48 kb gene cluster required for biosynthesis of the mycotoxin fumonisin Bl. Moreover, this system also facilitated simultaneous mutagenesis of multiple genes in A. niger. We anticipate that the use of the 5S rRNA gene as guide RNA promoter can broadly be applied for engineering highly efficient eukaryotic CRISPR/Cas9 toolkits. Additionally, the system reported here will enable development of designer chromosomes in model and industrially important fungi.
引用
收藏
页码:1568 / 1574
页数:13
相关论文
共 37 条
[21]   CRISPR/Cas9 Based Genome Editing of Penicillium chrysogenum [J].
Pohl, C. ;
Kiel, J. A. K. W. ;
Driessen, A. J. M. ;
Bovenberg, R. A. L. ;
Nygard, Y. .
ACS SYNTHETIC BIOLOGY, 2016, 5 (07) :754-764
[22]   Augmenting CRISPR applications in Drosophila with tRNA-flanked sgRNAs [J].
Port, Fillip ;
Bullock, Simon L. .
NATURE METHODS, 2016, 13 (10) :852-+
[23]   High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize [J].
Qi, Weiwei ;
Zhu, Tong ;
Tian, Zhongrui ;
Li, Chaobin ;
Zhang, Wei ;
Song, Rentao .
BMC BIOTECHNOLOGY, 2016, 16
[24]   Expansion of the CRISPR-Cas9 genome targeting space through the use of H1 promoter-expressed guide RNAs [J].
Ranganathan, Vinod ;
Wahlin, Karl ;
Maruotti, Julien ;
Zack, Donald J. .
NATURE COMMUNICATIONS, 2014, 5
[25]   Selection of chromosomal DNA libraries using a multiplex CRISPR system [J].
Ryan, Owen W. ;
Skerker, Jeffrey M. ;
Maurer, Matthew J. ;
Li, Xin ;
Tsai, Jordan C. ;
Poddar, Snigdha ;
Lee, Michael E. ;
DeLoache, Will ;
Dueber, John E. ;
Arkin, Adam P. ;
Cate, Jamie H. D. .
ELIFE, 2014, 3 :1-15
[26]   Multiplex Engineering of Industrial Yeast Genomes Using CRISPRm [J].
Ryan, Owen W. ;
Cate, Jamie H. D. .
USE OF CRISPR/CAS9, ZFNS, AND TALENS IN GENERATING SITE-SPECIFIC GENOME ALTERATIONS, 2014, 546 :473-489
[27]   CRISPR-Cas systems for editing, regulating and targeting genomes [J].
Sander, Jeffry D. ;
Joung, J. Keith .
NATURE BIOTECHNOLOGY, 2014, 32 (04) :347-355
[28]   An efficient tool for metabolic pathway construction and gene integration for Aspergillus niger [J].
Sarkari, Parveen ;
Marx, Hans ;
Blumhoff, Marzena L. . ;
Mattanovich, Diethard ;
Sauer, Michael ;
Steiger, Matthias G. .
BIORESOURCE TECHNOLOGY, 2017, 245 :1327-1333
[29]   Synthetic RNA Polymerase III Promoters Facilitate High-Efficiency CRISPR-Cas9-Mediated Genome Editing in Yarrowia lipolytica [J].
Schwartz, Cory M. ;
Hussain, Murtaza Shabbir ;
Blenner, Mark ;
Wheeldon, Ian .
ACS SYNTHETIC BIOLOGY, 2016, 5 (04) :356-359
[30]   Regulation of repair pathway choice at two-ended DNA double-strand breaks [J].
Shibata, Atsushi .
MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 2017, 803 :51-55