Method to Identify Stress-Strain Relationship of FRP-Confined Concrete under Eccentric Load

被引:3
作者
Li, Zhidong [1 ,2 ]
Wu, Yu-Fei [1 ,2 ]
Li, Pengda [1 ]
机构
[1] Shenzhen Univ, Guangdong Prov Key Lab Durabil Marine Civil Engn, Shenzhen 518060, Peoples R China
[2] RMIT Univ, Sch Engn, Melbourne, Vic 3000, Australia
基金
澳大利亚研究理事会;
关键词
Concrete; Stress– strain relationship; Confinement; Column test; Eccentric loading; MODEL; COLUMNS; STRENGTH;
D O I
10.1061/(ASCE)CC.1943-5614.0001099
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The stress-strain relationship of concrete is different under different boundary conditions, load paths, and environments. Identification of the stress-strain relationship of concrete for different structures and design conditions is critical to the engineering design of structures. Because direct measurement of local stress is impossible without interrupting the original local stress-strain condition, various indirect methods have been developed to derive stress-strain relationships of concrete. An analytical method for deriving the stress-strain relationship of concrete from eccentrically loaded column tests is extensively studied in this paper, through rigorous mathematical derivation and rational analytical studies. Detailed and rigorous equations and computational procedures for columns with an arbitrary shape of cross section are obtained. Instability of the calculated stress-strain curve or large scattering of results, a critical problem of the analytical method, is resolved through proper selection of equations and computational procedures. Application of the method reveals the real shape of the stress-strain relationship of fiber-reinforced polymer (FRP)-confined concrete under eccentric loading for the first time.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Stress-strain model for concrete in FRP-confined steel tubular columns
    Teng, J. G.
    Hu, Y. M.
    Yu, T.
    ENGINEERING STRUCTURES, 2013, 49 : 156 - 167
  • [32] Influence of concrete age on stress-strain behavior of FRP-confined normal- and high-strength concrete
    Lim, Jian C.
    Ozbakkaloglu, Togay
    CONSTRUCTION AND BUILDING MATERIALS, 2015, 82 : 61 - 70
  • [33] Influence of silica fume on stress-strain behavior of FRP-confined HSC
    Lim, Jian C.
    Ozbakkaloglu, Togay
    CONSTRUCTION AND BUILDING MATERIALS, 2014, 63 : 11 - 24
  • [34] Design-oriented stress-strain model for FRP-confined concrete in rectangular columns
    Lam, L
    Teng, JG
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2003, 22 (13) : 1149 - 1186
  • [35] Stress-strain model of an FRP-confined concrete filled steel tube under axial compression
    Zhang, Yirui
    Wei, Yang
    Bai, Jiawen
    Zhang, Yongxing
    THIN-WALLED STRUCTURES, 2019, 142 : 149 - 159
  • [36] Refinement of a Design-Oriented Stress-Strain Model for FRP-Confined Concrete
    Teng, J. G.
    Jiang, T.
    Lam, L.
    Luo, Y. Z.
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2009, 13 (04) : 269 - 278
  • [37] FRP-confined RC columns under combined bending and compression: A comparative study of concrete stress-strain models
    Yuan, XF
    Lam, L
    Teng, JG
    Smith, ST
    FRP COMPOSITES IN CIVIL ENGINEERING, VOLS I AND II, PROCEEDINGS, 2001, : 749 - 758
  • [38] Effect of confinement level, aspect ratio and concrete strength on the cyclic stress-strain behavior of FRP-confined concrete prisms
    Abbasnia, R.
    Ahmadi, R.
    Ziaadiny, H.
    COMPOSITES PART B-ENGINEERING, 2012, 43 (02) : 825 - 831
  • [39] Plastic strain and stress deterioration of FRP-confined concrete prisms under axial cyclic compression
    Ziaadiny, H.
    MATERIALS AND STRUCTURES, 2016, 49 (04) : 1157 - 1164
  • [40] Effect of Load Eccentricity on the Mechanical Response of FRP-Confined Predamaged Concrete under Compression
    Tijani, I. A.
    Jiang, Cheng
    Lim, C. W.
    Wu, Yu-Fei
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2020, 24 (05)