Existence and uniqueness results for quasi-linear elliptic and parabolic equations with nonlinear boundary conditions

被引:0
作者
Andreu, F. [1 ]
Igbida, N. [1 ]
Mazon, J. M. [1 ]
Toledo, J. [2 ]
机构
[1] Univ Valencia, Dr Moliner 50, E-46100 Burjassot, Spain
[2] Univ Picardie Jules Verne, CNRS, UMR 6140, LAMFA, F-80038 Amiens, France
来源
FREE BOUNDARY PROBLEMS: THEORY AND APPLICATIONS | 2007年 / 154卷
关键词
quasi-linear elliptic equations; quasi-linear parabolic equations; Stefan problem; Hele Shaw problem; nonlinear boundary conditions; nonlinear semigroup theory;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the questions of existence and uniqueness of weak and entropy solutions for equations of type -div a(x, Du) + gamma(u) is an element of phi, posed in an open bounded subset Omega of R-N, with nonlinear boundary conditions of the form a(x, Du) (.) eta+beta(u) is an element of psi. The nonlinear elliptic operator div a(x, Du) is modeled on the p-Laplacian operator Delta p(u) = div (vertical bar Du vertical bar(p-2) Du), with p > 1, gamma and beta are maximal monotone graphs in R-2 such that 0 is an element of gamma(0) and 0 is an element of beta(0), and the data phi is an element of L-1(Omega) and psi is an element of L-1(partial derivative Omega). We also study existence and uniqueness of weak solutions for a general degenerate elliptic-parabolic problem with nonlinear dynamical boundary conditions. Particular instances of this problem appear in various phenomena with changes of phase like multiphase Stefan problem and in the weak formulation of the mathematical model of the so called Hele Shaw problem.
引用
收藏
页码:11 / +
页数:3
相关论文
共 31 条
[1]  
ALT HW, 1983, MATH Z, V183, P311
[2]   Existence of renormalized solutions of degenerate elliptic-parabolic problems [J].
Ammar, K ;
Wittbold, P .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2003, 133 :477-496
[3]  
AMMAR K, IN PRESS REND MAT U
[4]  
ANDREU F, 1997, ADV MATH SCI APPL, V7, P183
[5]  
ANDREU F, IN PRESS INTERFACE F
[6]  
ANDREU F, IN PRESS ANN IH POIN
[7]  
BEJENARU I, 2001, ELECTRON J DIFFER EQ, P1
[8]   SOME L1 EXISTENCE AND DEPENDENCE RESULTS FOR SEMILINEAR ELLIPTIC-EQUATIONS UNDER NONLINEAR BOUNDARY-CONDITIONS [J].
BENILAN, P ;
CRANDALL, MG ;
SACKS, P .
APPLIED MATHEMATICS AND OPTIMIZATION, 1988, 17 (03) :203-224
[9]  
BENILAN P, IN PRESS EVOLUTION E
[10]  
Benilan P., 1995, Ann. Scuola Norm. Sup. Pisa Cl. Sci, V22, P241