Phaseless Gauss-Newton Inversion for Microwave Imaging

被引:6
|
作者
Narendra, Chaitanya [1 ]
Mojabi, Puyan [1 ]
机构
[1] Univ Manitoba, Dept Elect & Comp Engn, Winnipeg, MB R3T 5V6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Gauss-Newton inversion (GNI); inverse scattering; microwave imaging (MWI); phaseless (magnitude-only) inversion; regularization; SOURCE RECONSTRUCTION METHOD; TOTAL FIELD; TOMOGRAPHIC RECONSTRUCTION; SCATTERING DATABASE; ALGORITHMS; RETRIEVAL;
D O I
10.1109/TAP.2020.3026427
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A phaseless Gauss-Newton inversion (PGNI) algorithm is developed for microwave imaging (MWI) applications. In contrast to full-data MWI inversion that uses complex (magnitude and phase) scattered field data, the proposed PGNI algorithm inverts phaseless (magnitude-only) total field data. This PGNI algorithm is augmented with three different forms of regularization, originally developed for complex GNI. First, we use the standard weighted L-2 norm total variation multiplicative regularizer, which is appropriate when there is no prior information about the object being imaged. We then use two other forms of regularization operators to incorporate prior information about the object being imaged into the PGNI algorithm. The first one, herein referred to as SL-PGNI, incorporates prior information about the expected relative complex permittivity values of the object of interest. The other, referred to as spatial prior PGNI (SP-PGNI), incorporates SPs (structural information) about the objects being imaged. The use of prior information aims to compensate for the lack of total field phase data. The PGNI, SL-PGNI, and SP-PGNI inversion algorithms are then tested against synthetic and experimental phaseless total field data.
引用
收藏
页码:443 / 456
页数:14
相关论文
共 50 条
  • [41] The Gauss-Newton direction in semidefinite programming
    Kruk, S
    Muramatsu, M
    Rendl, F
    Vanderbei, RJ
    Wolkowicz, H
    OPTIMIZATION METHODS & SOFTWARE, 2001, 15 (01): : 1 - 28
  • [42] Gauss-Newton optimization in diffeomorphic registration
    Hernandez, Monica
    Olmos, Salvador
    2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 1083 - +
  • [43] Deep Gauss-Newton for phase retrieval
    Mom, Kannara
    Langer, Max
    Sixou, Bruno
    OPTICS LETTERS, 2023, 48 (05) : 1136 - 1139
  • [44] Continuous analog of the Gauss-Newton method
    Airapetyan, RG
    Ramm, AG
    Smirnova, AB
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (03): : 463 - 474
  • [45] Solving kinetic inversion problems via a physically bounded Gauss-Newton (PGN) method
    Tang, WY
    Zhang, LB
    Linninger, AA
    Tranter, RS
    Brezinsky, K
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2005, 44 (10) : 3626 - 3637
  • [46] Gauss-Newton inversion with node-based basis functions: Application to imaging of seabed minerals in an area with rough bathymetry
    Mittet, Rune
    Avdeeva, Anna
    GEOPHYSICS, 2024, 89 (01) : E13 - E29
  • [47] Adaptive multistart Gauss-Newton approach for geodetic data inversion of earthquake source parameters
    Zhao, Yingwen
    Xu, Caijun
    JOURNAL OF GEODESY, 2020, 94 (02)
  • [48] An enhanced Gauss-Newton inversion algorithm using a dual-qptimal grid approach
    Abubakar, Aria
    Habashy, Tarek M.
    Druskin, Vladimir L.
    Knizhnerman, Leonid
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (06): : 1419 - 1427
  • [49] A compressed implicit Jacobian scheme for 3D regularized Gauss-Newton inversion
    Abubakar, Aria
    Li, Maokun
    Liu, Jianguo
    Pan, Guangdong
    Habashy, Tarek M.
    2011 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (APSURSI), 2011, : 3067 - 3070
  • [50] A REGULARIZED GAUSS-NEWTON TRUST REGION APPROACH TO IMAGING IN DIFFUSE OPTICAL TOMOGRAPHY
    de Sturler, Eric
    Kilmer, Misha E.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (05): : 3057 - 3086