Phaseless Gauss-Newton Inversion for Microwave Imaging

被引:6
|
作者
Narendra, Chaitanya [1 ]
Mojabi, Puyan [1 ]
机构
[1] Univ Manitoba, Dept Elect & Comp Engn, Winnipeg, MB R3T 5V6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Gauss-Newton inversion (GNI); inverse scattering; microwave imaging (MWI); phaseless (magnitude-only) inversion; regularization; SOURCE RECONSTRUCTION METHOD; TOTAL FIELD; TOMOGRAPHIC RECONSTRUCTION; SCATTERING DATABASE; ALGORITHMS; RETRIEVAL;
D O I
10.1109/TAP.2020.3026427
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A phaseless Gauss-Newton inversion (PGNI) algorithm is developed for microwave imaging (MWI) applications. In contrast to full-data MWI inversion that uses complex (magnitude and phase) scattered field data, the proposed PGNI algorithm inverts phaseless (magnitude-only) total field data. This PGNI algorithm is augmented with three different forms of regularization, originally developed for complex GNI. First, we use the standard weighted L-2 norm total variation multiplicative regularizer, which is appropriate when there is no prior information about the object being imaged. We then use two other forms of regularization operators to incorporate prior information about the object being imaged into the PGNI algorithm. The first one, herein referred to as SL-PGNI, incorporates prior information about the expected relative complex permittivity values of the object of interest. The other, referred to as spatial prior PGNI (SP-PGNI), incorporates SPs (structural information) about the objects being imaged. The use of prior information aims to compensate for the lack of total field phase data. The PGNI, SL-PGNI, and SP-PGNI inversion algorithms are then tested against synthetic and experimental phaseless total field data.
引用
收藏
页码:443 / 456
页数:14
相关论文
共 50 条
  • [21] Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion
    Pratt, RG
    Shin, C
    Hicks, GJ
    GEOPHYSICAL JOURNAL INTERNATIONAL, 1998, 133 (02) : 341 - 362
  • [22] Gauss-Newton and Inverse Gauss-Newton Methods for Coefficient Identification in Linear Elastic Systems
    David L. Russell
    Acta Applicandae Mathematicae, 2012, 118 : 221 - 235
  • [23] Gauss-Newton and Inverse Gauss-Newton Methods for Coefficient Identification in Linear Elastic Systems
    Russell, David L.
    ACTA APPLICANDAE MATHEMATICAE, 2012, 118 (01) : 221 - 235
  • [24] A modified, sparsity promoting, Gauss-Newton algorithm for seismic waveform inversion
    Herrmann, Felix J.
    Li, Xiang
    Aravkin, Aleksandr Y.
    van Leeuwen, Tristan
    WAVELETS AND SPARSITY XIV, 2011, 8138
  • [25] Time domain Gauss-Newton seismic waveform inversion in elastic media
    Sheen, Dong-Hoon
    Tuncay, Kagan
    Baag, Chang-Eob
    Ortoleva, Peter J.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2006, 167 (03) : 1373 - 1384
  • [26] FREQUENCY DOMAIN ELASTIC WAVEFORM INVERSION USING THE GAUSS-NEWTON METHOD
    Chung, Wookeen
    Shin, Jungkyun
    Bae, Ho Seuk
    Yang, Dongwoo
    Shin, Changsoo
    JOURNAL OF SEISMIC EXPLORATION, 2012, 21 (01): : 29 - 48
  • [27] A MODIFIED GAUSS-NEWTON ALGORITHM FOR FAST MICROWAVE IMAGING USING NEAR-FIELD PROBES
    Islam, Md Asiful
    Kiourti, Asimina
    Volakis, John L.
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2017, 59 (06) : 1394 - 1400
  • [28] Wave Equation Reflection Traveltime Inversion Using Gauss-Newton Optimization
    Wang, Tengfei
    Cheng, Jiubing
    Geng, Jianhua
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [29] Gauss-Newton particle filter
    Cao, Hui
    Ohnishi, Noboru
    Takeuchi, Yoshinori
    Matsumoto, Tetsuya
    Kudo, Hiroaki
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2007, E90A (06) : 1235 - 1239
  • [30] Electrical Impedance Tomography Imaging Using Gauss-Newton Algorithm
    Islam, Md Rabiul
    Kiber, Md Adnan
    2014 INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV), 2014,