Dynamic Phase Engineering of Bendable Transition Metal Dichalcogenide Monolayers

被引:46
作者
Berry, Joel [1 ,2 ]
Zhou, Songsong [2 ]
Han, Jian [2 ]
Srolovitz, David J. [2 ,3 ]
Haataja, Mikko P. [1 ,4 ,5 ]
机构
[1] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
[2] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[3] Univ Penn, Dept Mech Engn & Appl Mech, Philadelphia, PA 19104 USA
[4] Princeton Univ, Princeton Inst Sci & Technol Mat PRISM, Princeton, NJ 08544 USA
[5] Princeton Univ, PACM, Princeton, NJ 08544 USA
基金
美国能源部;
关键词
2D materials; transition metal dichalcogenides; strain-induced structural transformations; phase field microelasticity; multiscale modeling; dynamically programmable materials; GENERALIZED GRADIENT APPROXIMATION; DER-WAALS HETEROSTRUCTURES; TOTAL-ENERGY CALCULATIONS; SINGLE-LAYER MOS2; WAVE BASIS-SET; MARTENSITIC TRANSFORMATIONS; ORTHORHOMBIC TRANSFORMATION; ULTRATHIN MOS2; MOTE2; FIELD;
D O I
10.1021/acs.nanolett.7b00165
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Current interest in two-dimensional (2D) materials is driven in part by the ability to dramatically alter their optoelectronic properties through strain and phase engineering. A combination of these approaches can be applied in quasi-2D transition metal dichalcogenide (TMD) monolayers to induce displacive structural transformations between semiconducting (H) and metallic/semimetallic (T') phases. We classify such transformations in Group VI TMDs, and formulate a multiscale, first principles-informed modeling framework to describe evolution of microstructural domain morphologies in elastically bendable 2D monolayers. We demonstrate that morphology and mechanical response can be controlled via application of strain either uniformly or through local probes to generate functionally patterned conductive T' domains. Such systems form dynamically programmable electromechanical 2D materials, capable of rapid local switching between domains with qualitatively different transport properties. This enables dynamic "drawing" of localized conducting regions in an otherwise semiconducting TMD monolayer, opening several interesting device-relevant functionalities such as the ability to dynamically "rewire" a device in real time.
引用
收藏
页码:2473 / 2481
页数:9
相关论文
共 45 条
[1]   Electrical contacts to two-dimensional semiconductors [J].
Allain, Adrien ;
Kang, Jiahao ;
Banerjee, Kaustav ;
Kis, Andras .
NATURE MATERIALS, 2015, 14 (12) :1195-1205
[2]   Stretching and Breaking of Ultrathin MoS2 [J].
Bertolazzi, Simone ;
Brivio, Jacopo ;
Kis, Andras .
ACS NANO, 2011, 5 (12) :9703-9709
[3]   Crystal symmetry and the reversibility of martensitic transformations [J].
Bhattacharya, K ;
Conti, S ;
Zanzotto, G ;
Zimmer, J .
NATURE, 2004, 428 (6978) :55-59
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]  
Cakir D., 2014, APPL PHYS LETT, V104
[6]   Chemically exfoliated single-layer MoS2: Stability, lattice dynamics, and catalytic adsorption from first principles [J].
Calandra, Matteo .
PHYSICAL REVIEW B, 2013, 88 (24)
[7]   Local Strain Engineering in Atomically Thin MoS2 [J].
Castellanos-Gomez, Andres ;
Roldan, Rafael ;
Cappelluti, Emmanuele ;
Buscema, Michele ;
Guinea, Francisco ;
van der Zant, Herre S. J. ;
Steele, Gary A. .
NANO LETTERS, 2013, 13 (11) :5361-5366
[8]  
Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/nchem.1589, 10.1038/NCHEM.1589]
[9]   Phase patterning for ohmic homojunction contact in MoTe2 [J].
Cho, Suyeon ;
Kim, Sera ;
Kim, Jung Ho ;
Zhao, Jiong ;
Seok, Jinbong ;
Keum, Dong Hoon ;
Baik, Jaeyoon ;
Choe, Duk-Hyun ;
Chang, K. J. ;
Suenaga, Kazu ;
Kim, Sung Wng ;
Lee, Young Hee ;
Yang, Heejun .
SCIENCE, 2015, 349 (6248) :625-628
[10]   Classification of displacive transformations: What is a martensitic transformation? [J].
Christian, JW ;
Olson, GB ;
Cohen, M .
JOURNAL DE PHYSIQUE IV, 1995, 5 (C8) :3-10