Scale-Free Dynamics in Animal Groups and Brain Networks

被引:13
作者
Ribeiro, Tiago L. [1 ]
Chialvo, Dante R. [2 ,3 ]
Plenz, Dietmar [1 ]
机构
[1] NIMH, Sect Crit Brain Dynam, NIH, Bethesda, MD 20892 USA
[2] Univ Nacl San Martin UNSAM, Escuela Ciencia & Tecnol, Inst Ciencias Fis ICIFI, Ctr Complex Syst & Brain Sci CEMSC3, Buenos Aires, DF, Argentina
[3] Consejo Nacl Invest Cient & Tecn CONICET, Buenos Aires, DF, Argentina
关键词
correlations; criticality; brain dynamics; neuronal network; flocking; scale-free; synchronization; mutual information;
D O I
10.3389/fnsys.2020.591210
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Collective phenomena fascinate by the emergence of order in systems composed of a myriad of small entities. They are ubiquitous in nature and can be found over a vast range of scales in physical and biological systems. Their key feature is the seemingly effortless emergence of adaptive collective behavior that cannot be trivially explained by the properties of the system's individual components. This perspective focuses on recent insights into the similarities of correlations for two apparently disparate phenomena: flocking in animal groups and neuronal ensemble activity in the brain. We first will summarize findings on the spontaneous organization in bird flocks and macro-scale human brain activity utilizing correlation functions and insights from critical dynamics. We then will discuss recent experimental findings that apply these approaches to the collective response of neurons to visual and motor processing, i.e., to local perturbations of neuronal networks at the meso- and microscale. We show how scale-free correlation functions capture the collective organization of neuronal avalanches in evoked neuronal populations in nonhuman primates and between neurons during visual processing in rodents. These experimental findings suggest that the coherent collective neural activity observed at scales much larger than the length of the direct neuronal interactions is demonstrative of a phase transition and we discuss the experimental support for either discontinuous or continuous phase transitions. We conclude that at or near a phase-transition neuronal information can propagate in the brain with similar efficiency as proposed to occur in the collective adaptive response observed in some animal groups.
引用
收藏
页数:10
相关论文
共 119 条
[1]  
AOKI I, 1982, B JPN SOC SCI FISH, V48, P1081
[2]   Dynamics of ongoing activity: Explanation of the large variability in evoked cortical responses [J].
Arieli, A ;
Sterkin, A ;
Grinvald, A ;
Aertsen, A .
SCIENCE, 1996, 273 (5283) :1868-1871
[3]   Finite-Size Scaling as a Way to Probe Near-Criticality in Natural Swarms [J].
Attanasi, Alessandro ;
Cavagna, Andrea ;
Del Castello, Lorenzo ;
Giardina, Irene ;
Melillo, Stefania ;
Parisi, Leonardo ;
Pohl, Oliver ;
Rossaro, Bruno ;
Shen, Edward ;
Silvestri, Edmondo ;
Viale, Massimiliano .
PHYSICAL REVIEW LETTERS, 2014, 113 (23)
[4]   Collective Behaviour without Collective Order in Wild Swarms of Midges [J].
Attanasi, Alessandro ;
Cavagna, Andrea ;
Del Castello, Lorenzo ;
Giardina, Irene ;
Melillo, Stefania ;
Parisi, Leonardo ;
Pohl, Oliver ;
Rossaro, Bruno ;
Shen, Edward ;
Silvestri, Edmondo ;
Viale, Massimiliano .
PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (07)
[5]  
Bak P., 1996, NATURE WORKS
[6]   Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study [J].
Ballerini, M. ;
Calbibbo, N. ;
Candeleir, R. ;
Cavagna, A. ;
Cisbani, E. ;
Giardina, I. ;
Lecomte, V. ;
Orlandi, A. ;
Parisi, G. ;
Procaccini, A. ;
Viale, M. ;
Zdravkovic, V. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (04) :1232-1237
[7]   Evidence of a robust universality class in the critical behavior of self-propelled agents: Metric versus topological interactions [J].
Barberis, Lucas ;
Albano, Ezequiel V. .
PHYSICAL REVIEW E, 2014, 89 (01)
[8]   Randomness, chaos and confusion in the study of antipredator vigilance [J].
Bednekoff, PA ;
Lima, SL .
TRENDS IN ECOLOGY & EVOLUTION, 1998, 13 (07) :284-287
[9]  
Beggs JM, 2003, J NEUROSCI, V23, P11167
[10]   How vision governs the collective behaviour of dense cycling pelotons [J].
Belden, J. ;
Mansoor, M. M. ;
Hellum, A. ;
Rahman, S. R. ;
Meyer, A. ;
Pease, C. ;
Pacheco, J. ;
Koziol, S. ;
Truscott, T. T. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2019, 16 (156)