Ozsvath-Szabo invariants and tight contact three-manifolds, II

被引:0
|
作者
Lisca, Paolo
Stipsicz, Andras I.
机构
[1] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
[2] Hungarian Acad Sci, Renyi Inst Math, H-1053 Budapest, Hungary
[3] Inst Adv Study, Princeton, NJ 08540 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p and n be positive integers with p > 1, and let E-p,E-n be the oriented 3-manifold obtained by performing p(2)n - pn - 1 surgery on a positive torus knot of type (p,pn + 1). We prove that E-2,E-n does not carry tight contact structures for any n, while Ep,n carries tight contact structures for any n and any odd p. In particular, we exhibit the first infinite family of closed, oriented, irreducible 3-manifolds which do not support tight contact structures. We obtain the nonexistence results via standard methods of contact topology, and the existence results by using a quite delicate computation of contact Ozsvith-Szabo invariants.
引用
收藏
页码:109 / 141
页数:33
相关论文
共 50 条