Nonparametric inference of interaction laws in systems of agents from trajectory data

被引:69
作者
Lu, Fei [1 ,2 ,3 ]
Zhong, Ming [2 ]
Tang, Sui [1 ]
Maggioni, Mauro [1 ,2 ,3 ,4 ]
机构
[1] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD 21218 USA
[3] Johns Hopkins Univ, Inst Data Intens Engn & Sci, Baltimore, MD 21218 USA
[4] Johns Hopkins Univ, Math Inst Data Sci, Baltimore, MD 21218 USA
基金
美国国家科学基金会;
关键词
data-driven modeling; dynamical systems; agent-based systems; PARAMETER-ESTIMATION; MODELS; DYNAMICS; IDENTIFICATION; EQUATIONS; PARTICLE; RULES;
D O I
10.1073/pnas.1822012116
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Inferring the laws of interaction in agent-based systems from observational data is a fundamental challenge in a wide variety of disciplines. We propose a nonparametric statistical learning approach for distance-based interactions, with no reference or assumption on their analytical form, given data consisting of sampled trajectories of interacting agents. We demonstrate the effectiveness of our estimators both by providing theoretical guarantees that avoid the curse of dimensionality and by testing them on a variety of prototypical systems used in various disciplines. These systems include homogeneous and heterogeneous agent systems, ranging from particle systems in fundamental physics to agent-based systems that model opinion dynamics under the social influence, prey-predator dynamics, flocking and swarming, and phototaxis in cell dynamics.
引用
收藏
页码:14424 / 14433
页数:10
相关论文
共 45 条
[1]  
[Anonymous], 1986, The History of Statistics: The Measurement of Uncertainty before 1900
[2]   Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study [J].
Ballerini, M. ;
Calbibbo, N. ;
Candeleir, R. ;
Cavagna, A. ;
Cisbani, E. ;
Giardina, I. ;
Lecomte, V. ;
Orlandi, A. ;
Parisi, G. ;
Procaccini, A. ;
Viale, M. ;
Zdravkovic, V. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (04) :1232-1237
[3]   USE OF SPLINES WITH UNKNOWN END POINTS IN IDENTIFICATION OF SYSTEMS [J].
BELLMAN, R ;
ROTH, RS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1971, 34 (01) :26-&
[4]   Light regulation of type IV pilus-dependent motility by chemosensor-like elements in Synechocystis PCC6803 [J].
Bhaya, D ;
Takahashi, A ;
Grossman, AR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (13) :7540-7545
[5]   Statistical mechanics for natural flocks of birds [J].
Bialek, William ;
Cavagna, Andrea ;
Giardina, Irene ;
Mora, Thierry ;
Silvestri, Edmondo ;
Viale, Massimiliano ;
Walczak, Aleksandra M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (13) :4786-4791
[6]   Inferring interaction rules from observations of evolutive systems I: The variational approach [J].
Bongini, Mattia ;
Fornasier, Massimo ;
Hansen, Markus ;
Maggioni, Mauro .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2017, 27 (05) :909-951
[7]   Parameter estimation of ODE's via nonparametric estimators [J].
Brunel, Nicolas J-B. .
ELECTRONIC JOURNAL OF STATISTICS, 2008, 2 :1242-1267
[8]   Discovering governing equations from data by sparse identification of nonlinear dynamical systems [J].
Brunton, Steven L. ;
Proctor, Joshua L. ;
Kutz, J. Nathan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (15) :3932-3937
[9]   Robust Estimation for Ordinary Differential Equation Models [J].
Cao, J. ;
Wang, L. ;
Xu, J. .
BIOMETRICS, 2011, 67 (04) :1305-1313
[10]  
Carrillo JA, 2017, MODEL SIMUL SCI ENG, P259, DOI 10.1007/978-3-319-49996-3_7