Photo thermal effect graphene detector featuring 105 Gbit s-1 NRZ and 120 Gbit s-1 PAM4 direct detection

被引:72
作者
Marconi, S. [1 ]
Giambra, M. A. [2 ]
Montanaro, A. [2 ]
Miseikis, V [3 ,4 ]
Soresi, S. [2 ,5 ]
Tirelli, S. [2 ,5 ]
Galli, P. [6 ]
Buchali, F. [7 ]
Templ, W. [7 ]
Coletti, C. [3 ,4 ]
Sorianello, V [2 ]
Romagnoli, M. [2 ]
机构
[1] Scuola Super Sant Anna, Tecip Inst, Pisa, Italy
[2] CNIT, Photon Networks & Technol Lab, Pisa, Italy
[3] Ist Italiano Tecnol, Ctr Nanotechnol Innovat NEST, Pisa, Italy
[4] Ist Italiano Tecnol, Graphene Labs, Genoa, Italy
[5] Fdn INPHOTEC, Pisa, Italy
[6] Nokia Solut & Networks Italia, Vimercate, Italy
[7] Nokia Bell Labs, Stuttgart, Germany
基金
欧盟地平线“2020”;
关键词
HIGH-RESPONSIVITY; GENERATION; PHOTODETECTOR; PHOTORESPONSE;
D O I
10.1038/s41467-021-21137-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
One of the main challenges of next generation optical communication is to increase the available bandwidth while reducing the size, cost and power consumption of photonic integrated circuits. Graphene has been recently proposed to be integrated with silicon photonics to meet these goals because of its high mobility, fast carrier dynamics and ultra-broadband optical properties. We focus on graphene photodetectors for high speed datacom and telecom applications based on the photo-thermo-electric effect, allowing for direct optical power to voltage conversion, zero dark current, and ultra-fast operation. We report on a chemical vapour deposition graphene photodetector based on the photo-thermoelectric effect, integrated on a silicon waveguide, providing frequency response >65GHz and optimized to be interfaced to a 50 Omega voltage amplifier for direct voltage amplification. We demonstrate a system test leading to direct detection of 105 Gbit s(-1) non-return to zero and 120 Gbit s(-1) 4-level pulse amplitude modulation optical signals. The fast carrier dynamics and ultra-broadband optical properties of graphene make it suitable for optical communications. Here, the authors demonstrate a photo-thermo-electric graphene photodetector integrated on a Si waveguide featuring 105 Gbit s(-1) non-return to zero and 120 Gbit s(-1) 4-level pulse amplitude modulation direct detection.
引用
收藏
页数:10
相关论文
共 66 条
[1]  
[Anonymous], 2017, Cisco7 Feb.
[2]  
[Anonymous], 2019, 2019 C LAS EL CLEO P, V1, P4
[3]  
[Anonymous], 2011, Microwave Engineering
[4]  
Ardaravicius Linas, 2017, 2017 International Conference on Noise and Fluctuations (ICNF), DOI 10.1109/ICNF.2017.7986005
[5]   Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene [J].
Basko, D. M. ;
Piscanec, S. ;
Ferrari, A. C. .
PHYSICAL REVIEW B, 2009, 80 (16)
[6]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[7]   Quasiparticle dynamics in graphene [J].
Bostwick, Aaron ;
Ohta, Taisuke ;
Seyller, Thomas ;
Horn, Karsten ;
Rotenberg, Eli .
NATURE PHYSICS, 2007, 3 (01) :36-40
[8]   Ultrafast collinear scattering and carrier multiplication in graphene [J].
Brida, D. ;
Tomadin, A. ;
Manzoni, C. ;
Kim, Y. J. ;
Lombardo, A. ;
Milana, S. ;
Nair, R. R. ;
Novoselov, K. S. ;
Ferrari, A. C. ;
Cerullo, G. ;
Polini, M. .
NATURE COMMUNICATIONS, 2013, 4
[9]  
Cisco, 2020, Cisco annual internet report (2018-2023) white paper
[10]   Random Strain Fluctuations as Dominant Disorder Source for High-Quality On-Substrate Graphene Devices [J].
Couto, Nuno J. G. ;
Costanzo, Davide ;
Engels, Stephan ;
Ki, Dong-Keun ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Stampfer, Christoph ;
Guinea, Francisco ;
Morpurgo, Alberto F. .
PHYSICAL REVIEW X, 2014, 4 (04)