Contractivity of Wasserstein metrics and asymptotic profiles for scalar conservation laws

被引:7
作者
Carrillo, Jose A.
Di Francesco, Marco
Lattanzio, Corrado
机构
[1] Univ Aquila, Dipartimento Matemat Pura & Applicata, Sez Matemat Ingn, I-67040 Laquila, Italy
[2] Univ Autonoma Barcelona, ICREA, E-08193 Barcelona, Spain
[3] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
关键词
D O I
10.1016/j.jde.2006.07.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to analyze contractivity properties of Wasserstein-type metrics for one-dimensional scalar conservation laws with nonnegative, L-infinity and compactly supported initial data and its implications on the long time asymptotics. The flux is assumed to be convex and without any growth condition at the zero state. We propose a time-parameterized family of functions as intermediate asymptotics and prove the solutions, after a time-depending scaling, converge toward this family in the d(infinity)-Wasserstein metric. This asymptotic behavior relies on the aforementioned contraction property for conservation laws in the space of probability densities metrized with the d(infinity)-Wasserstein distance. Finally, we also give asymptotic profiles for initial data whose distributional derivative is a probability measure. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:425 / 458
页数:34
相关论文
共 15 条
[1]   Contractive metrics for scalar conservation laws [J].
Bolley, F ;
Brenier, Y ;
Loeper, G .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2005, 2 (01) :91-107
[2]   Intermediate asymptotics beyond homogeneity and self-similarity:: Long time behavior for ut=Δφ(u) [J].
Carrillo, JA ;
Di Francesco, M ;
Toscani, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 180 (01) :127-149
[3]  
Carrillo JA, 2005, NEW TRENDS IN MATHEMATICAL PHYSICS, P234
[4]   Finite speed of propagation in porous media by mass transportation methods [J].
Carrillo, JA ;
Gualdani, MP ;
Toscani, G .
COMPTES RENDUS MATHEMATIQUE, 2004, 338 (10) :815-818
[5]  
CARRILLO JA, IN PRESS COMMUN MATH
[6]  
CARRILLO JA, 2006, 27 UAB
[7]   REGULARIZING EFFECTS FOR UT + A-PHI(U) = O IN L [J].
CRANDALL, M ;
PIERRE, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1982, 45 (02) :194-212
[8]  
Dafermos C. M., 2000, GRUNDLEHREN MATH WIS, V325
[9]   DECAY AND ASYMPTOTIC-BEHAVIOR OF SOLUTIONS TO NONLINEAR HYPERBOLIC SYSTEMS OF CONSERVATION LAWS [J].
DIPERNA, RJ .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1975, 24 (11) :1047-1071
[10]  
Dolbeault J, 2005, ASYMPTOTIC ANAL, V41, P189