Modeling and Characterization of Vertical GaN Schottky Diodes With AlGaN Cap Layers

被引:13
作者
Hontz, Michael R. [1 ]
Cao, Yu [2 ]
Chen, Mary [2 ]
Li, Ray [2 ]
Garrido, Austin [2 ]
Chu, Rongming [2 ]
Khanna, Raghav [1 ]
机构
[1] Univ Toledo, Dept Elect Engn & Comp Sci, Toledo, OH 43606 USA
[2] HRL Labs, Malibu, CA 90265 USA
关键词
Power semiconductor devices; Schottky diodes; semiconductor device modeling; semiconductor metal interfaces; tunneling; TRANSPORT;
D O I
10.1109/TED.2017.2686778
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new gallium nitride (GaN) Schottky device structure suitable for power electronic applications is discussed. A GaN Schottky diode with an ultrathin AlGaN cap layer was fabricated using an Ni/Aumetal stackas the Schottky electrode. C-V measurements at various temperatures were used to calculate a barrier height of 0.65 V with a free electron concentration of 5 x 10(15) cm(- 3) both of which appear temperature independent. A forward conduction model based on a thermionic emission-diffusion process with tunneling through the AlGaN barrier was developed and compared favorably to experimental data. A reverse conduction model utilizing thermionic field emission (TFE) with a triangular energy barrier is presented and then improved upon with a scaling factor that modifies the barrier thickness. This TFE model compares more favorably with the experimental data than the standard thermionic emission model typically used in Schottky diodes. Both the forward conduction and reverse conduction characteristics were assessed at room temperature and elevated temperature. The model can be used to predict how the physical parameters of the device affect its I-Vcharacteristics.
引用
收藏
页码:2172 / 2178
页数:7
相关论文
共 19 条
[1]   Improved performance in vertical GaN Schottky diode assisted by AlGaN tunneling barrier [J].
Cao, Y. ;
Chu, R. ;
Li, R. ;
Chen, M. ;
Williams, A. J. .
APPLIED PHYSICS LETTERS, 2016, 108 (11)
[2]   CURRENT TRANSPORT IN METAL-SEMICONDUCTOR BARRIERS [J].
CROWELL, CR ;
SZE, SM .
SOLID-STATE ELECTRONICS, 1966, 9 (11-1) :1035-&
[3]   Vertical GaN Power Diodes With a Bilayer Edge Termination [J].
Dickerson, Jeramy R. ;
Allerman, Andrew A. ;
Bryant, Benjamin N. ;
Fischer, Arthur J. ;
King, Michael P. ;
Moseley, Michael W. ;
Armstrong, Andrew M. ;
Kaplar, Robert J. ;
Kizilyalli, Isik C. ;
Aktas, Ozgur ;
Wierer, Jonathan J., Jr. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2016, 63 (01) :419-425
[4]   Review of Commercial GaN Power Devices and GaN-Based Converter Design Challenges [J].
Jones, Edward A. ;
Wang, Fei ;
Costinett, Daniel .
IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, 2016, 4 (03) :707-719
[5]   3.7 kV Vertical GaN PN Diodes [J].
Kizilyalli, Isik C. ;
Edwards, Andrew P. ;
Nie, Hui ;
Bour, Dave ;
Prunty, Thomas ;
Disney, Don .
IEEE ELECTRON DEVICE LETTERS, 2014, 35 (02) :247-249
[6]   High Voltage Vertical GaN p-n Diodes With Avalanche Capability [J].
Kizilyalli, Isik C. ;
Edwards, Andrew P. ;
Nie, Hui ;
Disney, Don ;
Bour, Dave .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2013, 60 (10) :3067-3070
[7]   Comprehensive Characterization of 10-kV Silicon Carbide Half-Bridge Modules [J].
Lemmon, Andrew N. ;
Graves, Ryan C. .
IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, 2016, 4 (04) :1462-1473
[8]  
Mieghem P.V., 1994, IEEE T ELECTRON DEV, V41, P2440
[9]   A Survey of Wide Bandgap Power Semiconductor Devices [J].
Millan, Jose ;
Godignon, Philippe ;
Perpina, Xavier ;
Perez-Tomas, Amador ;
Rebollo, Jose .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2014, 29 (05) :2155-2163
[10]   Analysis of reverse-bias leakage current mechanisms in GaN grown by molecular-beam epitaxy [J].
Miller, EJ ;
Yu, ET ;
Waltereit, P ;
Speck, JS .
APPLIED PHYSICS LETTERS, 2004, 84 (04) :535-537