Glucose-functionalized Au nanoprisms for optoacoustic imaging and near-infrared photothermal therapy

被引:39
作者
Han, Jishu [1 ,2 ]
Zhang, Jingjing [1 ]
Yang, Meng [1 ]
Cui, Daxiang [1 ]
de la Fuente, Jesus M. [1 ,3 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Nano Biomed & Engn, Key Lab Thin Film & Microfabricat Technol, Minist Educ,Dept Instrument Sci & Engn,Sch Elect, Shanghai 200240, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Chem & Mol Engn, Lab Inorgan Synth & Appl Chem, Key Lab Ecochem Engn,Minist Educ, Qingdao 266042, Peoples R China
[3] Univ Zaragoza, CSIC, Inst Ciencia Mat Aragon, Zaragoza 50018, Spain
基金
中国博士后科学基金;
关键词
CELLULAR UPTAKE; GOLD NANOPRISMS; MACROMOLECULAR THERAPEUTICS; NANOPARTICLES; CYTOTOXICITY; CELLS; PERMEABILITY; CHEMOTHERAPY; ABSORPTION; EFFICIENT;
D O I
10.1039/c5nr06261f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Targeted imaging and tumor therapy using nanomaterials has stimulated research interest recently, but the high cytotoxicity and low cellular uptake of nanomaterials limit their bioapplication. In this paper, glucose (Glc) was chosen to functionalize Au nanoprisms (NPrs) for improving the cytotoxicity and cellular uptake of Au@PEG-Glc NPrs into cancer cells. Glucose is a primary source of energy at the cellular level and at cellular membranes for cell recognition. A coating of glucose facilitates the accumulation of Au@PEG-Glc NPrs in a tumor region much more than Au@PEG NPrs. Due to the high accumulation and excellent photoabsorbing property of Au@PEG-Glc NPrs, enhanced optoacoustic imaging of a tumor in vivo was achieved, and visualization of the tumor further guided cancer treatment. Based on the optical-thermal conversion performance of Au@PEG-Glc NPrs, the tumor in vivo was effectively cured through photothermal therapy. The current work demonstrates the great potential of Au@PEG-Glc NPrs in optoacoustic imaging and photothermal cancer therapy in future.
引用
收藏
页码:492 / 499
页数:8
相关论文
共 67 条
  • [1] Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging
    Agarwal, A.
    Huang, S. W.
    O'Donnell, M.
    Day, K. C.
    Day, M.
    Kotov, N.
    Ashkenazi, S.
    [J]. JOURNAL OF APPLIED PHYSICS, 2007, 102 (06)
  • [2] Alcantar NA, 2000, J BIOMED MATER RES, V51, P343, DOI 10.1002/1097-4636(20000905)51:3<343::AID-JBM7>3.0.CO
  • [3] 2-D
  • [4] Cellular Uptake and Cytotoxicity of Gold Nanorods: Molecular Origin of Cytotoxicity and Surface Effects
    Alkilany, Alaaldin M.
    Nagaria, Pratik K.
    Hexel, Cole R.
    Shaw, Timothy J.
    Murphy, Catherine J.
    Wyatt, Michael D.
    [J]. SMALL, 2009, 5 (06) : 701 - 708
  • [5] Aloj L, 1999, CANCER RES, V59, P4709
  • [6] DEVIANT ENERGETIC METABOLISM OF GLYCOLYTIC CANCER-CELLS
    BAGGETTO, LG
    [J]. BIOCHIMIE, 1992, 74 (11) : 959 - 974
  • [7] Gold Nanoprisms as Optoacoustic Signal Nanoamplifiers for In Vivo Bioimaging of Gastrointestinal Cancers
    Bao, Chenchen
    Beziere, Nicolas
    del Pino, Pablo
    Pelaz, Beatriz
    Estrada, Giovani
    Tian, Furong
    Ntziachristos, Vasilis
    de la Fuente, Jesus M.
    Cui, Daxiang
    [J]. SMALL, 2013, 9 (01) : 68 - 74
  • [8] Gold glyconanoparticles:: Synthetic polyvalent ligands mimicking glycocalyx-like surfaces as tools for glycobiological studies
    Barrientos, AG
    de la Fuente, JM
    Rojas, TC
    Fernández, A
    Penadés, S
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2003, 9 (09) : 1909 - 1921
  • [9] Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity
    Boisselier, Elodie
    Astruc, Didier
    [J]. CHEMICAL SOCIETY REVIEWS, 2009, 38 (06) : 1759 - 1782
  • [10] Cancer IAfRo, 2015, EST CANC INC MORT PR