Electrodeposition Kinetics in Li-S Batteries: Effects of Low Electrolyte/Sulfur Ratios and Deposition Surface Composition

被引:173
作者
Fan, Frank Y. [1 ]
Chiang, Yet-Ming [1 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
关键词
LITHIUM-SULFUR BATTERIES; SOL-GEL PROCESS; THIN-FILMS; PERFORMANCE; ELECTROCRYSTALLIZATION; SPECTROSCOPY; NUCLEATION; CHEMISTRY; REDOX;
D O I
10.1149/2.0051706jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium-sulfur batteries obtain most of their capacity from the electrodeposition of Li2S. This is often a slow process, limiting the rate capability of Li-S batteries. In this work, the kinetics of Li2S deposition from polysulfide solutions of 1-7 M S concentration onto carbon and two conductive oxides (indium tin oxide, ITO; and aluminum-doped zinc oxide, AZO) were characterized. Higher polysulfide concentrations were found to result in significantly slower electrodeposition, with island nucleation and growth rates up to 75% less than at low concentrations. Since Li-S batteries with low electrolyte/sulfur (E/S) ratios necessarily reach higher polysulfide concentrations during use, the present results explain why high polarization and low rate capability are observed under such conditions. Given that low E/S ratios are critical to reach high energy density, means to improve electrodeposition kinetics at high polysulfide concentrations are necessary. Towards this goal, coatings of ITO and AZO on carbon fiber current collectors were found to improve island growth rates at 5 M by up to similar to 60%. Of the two oxides, AZO was found to be superior in reducing the electrodeposition overpotential. Its benefits were demonstrated for carbon fiber current collectors coated with AZO and for conductive suspensions incorporating carbon black and nanoparticle AZO. (C) The Author(s) 2017. Published by ECS. All rights reserved.
引用
收藏
页码:A917 / A922
页数:6
相关论文
共 30 条
[1]   Kinetics of phase change I - General theory [J].
Avrami, M .
JOURNAL OF CHEMICAL PHYSICS, 1939, 7 (12) :1103-1112
[2]   A Review on Li-S Batteries as a High Efficiency Rechargeable Lithium Battery [J].
Barghamadi, Marzieh ;
Kapoor, Ajay ;
Wen, Cuie .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (08) :A1256-A1263
[3]   KINETICS OF ELECTROCRYSTALLIZATION OF THIN FILMS OF CALOMEL [J].
BEWICK, A ;
THIRSK, HR ;
FLEISCHMANN, M .
TRANSACTIONS OF THE FARADAY SOCIETY, 1962, 58 (479) :2200-&
[4]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[5]   Sulfur Speciation in Li-S Batteries Determined by Operando X-ray Absorption Spectroscopy [J].
Cuisinier, Marine ;
Cabelguen, Pierre-Etienne ;
Evers, Scott ;
He, Guang ;
Kolbeck, Mason ;
Garsuch, Arnd ;
Bolin, Trudy ;
Balasubramanian, Mahalingam ;
Nazar, Linda F. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (19) :3227-3232
[6]   Morphological and Structural Studies of Composite Sulfur Electrodes upon Cycling by HRTEM, AFM and Raman Spectroscopy [J].
Elazari, Ran ;
Salitra, Gregory ;
Talyosef, Yossi ;
Grinblat, Judith ;
Scordilis-Kelley, Charislea ;
Xiao, Ang ;
Affinito, John ;
Aurbach, Doron .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (10) :A1131-A1138
[7]   Critical Link between Materials Chemistry and Cell-Level Design for High Energy Density and Low Cost Lithium-Sulfur Transportation Battery [J].
Eroglu, Damla ;
Zavadil, Kevin R. ;
Gallagher, Kevin G. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (06) :A982-A990
[8]  
Fan F. Y., 2016, J ELECTROCHEM SOC
[9]   Mechanism and Kinetics of Li2S Precipitation in Lithium-Sulfur Batteries [J].
Fan, Frank Y. ;
Carter, W. Craig ;
Chiang, Yet-Ming .
ADVANCED MATERIALS, 2015, 27 (35) :5203-5209
[10]   Polysulfide Flow Batteries Enabled by Percolating Nanoscale Conductor Networks [J].
Fan, Frank Y. ;
Woodford, William H. ;
Li, Zheng ;
Baram, Nir ;
Smith, Kyle C. ;
Helal, Ahmed ;
McKinley, Gareth H. ;
Carter, W. Craig ;
Chiang, Yet-Ming .
NANO LETTERS, 2014, 14 (04) :2210-2218