Multiplicity of Positive Solutions for Schrodinger-Poisson Systems with a Critical Nonlinearity in R3

被引:0
作者
Xie, Weihong [1 ]
Chen, Haibo [1 ]
Shi, Hongxia [2 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] Hunan First Normal Univ, Sch Math & Computat Sci, Changsha 410205, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Multiple positive solutions; Schrodinger-Poisson systems; Variational methods; Barycenter map; Critical Sobolev exponent; NONTRIVIAL SOLUTIONS; EXISTENCE; EQUATIONS;
D O I
10.1007/s40840-018-0623-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is dedicated to studying the multiplicity of positive solutions for the following Schrodinger-Poisson problem - u + u + fu =.Q( x)| u| q-2u + K( x)| u| 4u, in R3, - f = u2, in R3, where 4 < q < 6 or q = 2,. > 0 is a parameter, K( x) and Q( x) satisfy some mild assumptions. With minimax theorems and Ljusternik-Schnirelmann theory, we investigate the relation between the number of positive solutions and the topology of the set where K( x) attains its global maximum for small..
引用
收藏
页码:2657 / 2680
页数:24
相关论文
共 34 条
[1]  
[Anonymous], 2016, Electronic Imaging, Visualization and Data Analysis
[2]   EXISTENCE OF POSITIVE SOLUTIONS OF THE EQUATION -DELTA-U+A(X)U=U(N+2)/(N-2) IN RN [J].
BENCI, V ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 88 (01) :90-117
[3]   Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (04) :409-420
[4]   MULTIPLE POSITIVE SOLUTIONS OF SOME ELLIPTIC PROBLEMS VIA THE MORSE-THEORY AND THE DOMAIN TOPOLOGY [J].
BENCI, V ;
CERAMI, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1994, 2 (01) :29-48
[5]  
Benci V., 1998, Topol Methods Nonlinear Anal, V11, P283, DOI DOI 10.12775/TMNA.1998.019
[6]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[7]   Positive solutions for some non-autonomous Schrodinger-Poisson systems [J].
Cerami, Giovanna ;
Vaira, Giusi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (03) :521-543
[8]   Existence and Multiplicity of Solutions for Semilinear Elliptic Systems with Periodic Potential [J].
Che, Guofeng ;
Chen, Haibo ;
Yang, Liu .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (04) :1329-1348
[9]   EXISTENCE AND MULTIPLICITY OF NONTRIVIAL SOLUTIONS FOR KLEIN-GORDON-MAXWELL SYSTEM WITH A PARAMETER [J].
Che, Guofeng ;
Chen, Haibo .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (03) :1015-1030
[10]   Existence of multiple solutions for modified Schrodinger-Kirchhoff-Poisson type systems via perturbation method with sign-changing potential [J].
Chen, Jianhua ;
Tang, Xianhua ;
Gao, Zu .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (03) :505-519